Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fuzzy set theory, soft set theory and rough set theory are powerfulmathematical tools for dealing with various types of uncertainty. This paper is devoted to define a broad family of soft fuzzy rough sets, each one of which, called an (I, J)-soft fuzzy rough set, is determined by a pair of border implicators (I, J). Alternatively, it shows that a fuzzy soft set can induce a T -equivalence fuzzy relation which is used to granulate the universe. In particular, we prove that (I, J)-fuzzy soft rough sets in our work are equivalent to (I, J)-fuzzy rough sets of Yao et al. by using a T -equivalence fuzzy relation determined by a fuzzy soft set. Furthermore, basic properties of (I, J)-fuzzy soft rough sets are investigated. Meanwhile, an operator-oriented characterization of (I, J)-fuzzy soft rough sets is proposed. Finally, an example is given to illustrate the approach of present paper.
Wydawca
Czasopismo
Rocznik
Tom
Strony
457--491
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
- College of Mathematics and Statistics Northwest Normal University Lanzhou, 730070, PR China
autor
- College of Mathematics and Statistics Northwest Normal University Lanzhou, 730070, PR China
Bibliografia
- [1] Aktas, H., Căgman, N.: Soft sets and soft groups, Information Sciences, 177, 2007, 2726–2735.
- [2] Belohlavek, R.: Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [3] Chen, D. G., Tsang, E. C. C., Yeung, D. S., Wang, X. Z.: The paremeterization reduction of soft sets and its applications, Computers and Mathematics with Applications, 49, 2005, 757–763.
- [4] Cornelis, C., Deschrijver, G., Kerre, E. E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, International Journal of Approximate Reasoning, 35, 2004, 55–95.
- [5] Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together, in: Handbook of Applications and Advances of the Sets Theory: Intelligent Decision Support (Slowiński, R., Eds.), Kluwer Academic Publishers, Boston Dordrecht London, 1992, 233–250.
- [6] Feng, F., Li, C. X., Davvaz, B., Ali, M. I.: Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing, 14, 2010, 899–911.
- [7] Grzymala-Busse, J. W., LERS-A system for learning from examples based on rough sets, in: Intelligent Decision Support (Slowiński, R., Eds.), Kluwer Academic Publishers, Boston, 1992, 3–18.
- [8] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms, Trends in Logic Studia Logica Libarary, vol. 8, Kluwer Academic Publishers, Dodrecht, 2000.
- [9] Klir, G. J., Yuan, B., Fuzzy logic: theory and applications, Prentice-Hall, Englewood Cliffs, NJ, 1995.
- [10] Maji, P. K., Biswas, R., Roy, A. R.: Fuzzy soft sets, The Journal of Fuzzy Mathematics, 9, 2001, 589–602.
- [11] Maji, P. K., Biswas, R., Roy, A. R.: Soft set theory, Computers and Mathematics with Applications, 45, 2003, 555–562.
- [12] Maji, P. K., Roy, A. R., Biswas, R.: An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44, 2002, 1077–1083.
- [13] Meng, D., Zhang, X. H., Qin, K. Y.: Soft rough fuzzy sets and soft fuzzy rough sets, Computers and Mathematics with Applications, 62, 2011, 4635–4645.
- [14] Mi, J. S., Wu, W. Z., Zhang, W. X.: Approaches to knowledge reduction based on variable precision rough set model, Information Science, 159, 2004, 255–272.
- [15] Molodtsov, D.: Soft set theory-first results, Computers and Mathematics with Applications, 37, 1999, 19–31.
- [16] Morsi, N. N., Yakout,M. M.: Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 1998, 327–342.
- [17] Nachtegael, M., Kerre, E. E.: The dizzy number of fuzzy implication operators on finite chains, in: Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry (Ruan, D., et al., Eds.),World Scientific, Singapore, 1998, 29–35.
- [18] Pawlak, Z.: Rough sets, International Journal of Computer and Information Science, 11(5), 1982, 341–356.
- [19] Radzikowska, A. M., Kerre, E. E.: A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 2002, 137–155.
- [20] Radzikowska, A. M., Kerre, E. E.: Fuzzy rough sets based on residuated lattices, in: Transactions on Rough Sets II (Peter, J. F., et al., Eds.), LNCS, 3135, 2004, 278–296.
- [21] Roy, A. R., Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics, 203, 2007, 412–418.
- [22] Wu,W. Z.,Mi, J. S., Zhang,W. X.: Generalized fuzzy rough sets, Information Sciences, 151, 2003, 263–282.
- [23] Yang, X. B., Lin, T. Y., Yang, J. Y., Li, Y., Yu, D. J.: Combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications, 58, 2009, 521–527.
- [24] Yao, Y. Y.: Combination of rough and fuzzy sets based on _-level sets, in: Rough Sets and Data Mining: Analysis for Imprecise Data (Lin, T. Y., Cercone, N., Eds.), Kluwer Academic Publishers, Boston, 1997, 301–321.
- [25] Yao, O. Y.,Wang, Z. D., Zhang,H. P.: On fuzzy rough sets based on tolerance relations, Information Sciences, 180, 2010, 532–542.
- [26] Zadeh, L. A.: Fuzzy sets, Information and Control, 8, 1965, 338–353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ea0073f-25e1-4a0b-bdc7-48b57e8e6983