PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of HEC/PVDF coating on glass substrate for formaldehyde concentration sensing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ powłoki HEC/PVDF na podłoże szklane do wykrywania stężenia formaldehydu
Języki publikacji
EN
Abstrakty
EN
This paper has reported demonstration of simple and low cost formaldehyde sensor utilizing Hydroxyethyl cellulose/Polyvinylidene fluoride (HEC/PVDF) coated glass substrate. It was integrated with Arduino microcontroller for data acquisition of the variation of the transmitted light during the sensing. The formaldehyde detection is based on the change in refractive index (RI) of the HEC/PVDF as a sensitive material which modulate the output light intensity when the concentration level of the formaldehyde increases. A significant response towards formaldehyde concentrations level was observed with the output voltage reduced linearly from 1.5V to 0.8V. The sensitivity of the proposed sensor improves by a factor of 1.09 as compared to uncoated glass substrate. It also performed better in term of stability, response time and hysteresis. The proposed sensor evades the used of costly optical sensor fabrication and manufacturing process which are more practical for large production while maintaining a good sensing performances. Based on the experiment results, the proposed approach has exhibited convincing potential as a formaldehyde sensor.
PL
W tym artykule przedstawiono demonstrację prostego i taniego czujnika formaldehydu wykorzystującego podłoże szklane powlekane hydroksyetylocelulozą/polifluorkiem winylidenu (HEC/PVDF). Został zintegrowany z mikrokontrolerem Arduino w celu akwizycji danych o zmienności przepuszczanego światła podczas wykrywania. Wykrywanie formaldehydu opiera się na zmianie współczynnika załamania światła (RI) HEC/PVDF jako wrażliwego materiału, który moduluje natężenie światła wyjściowego, gdy poziom stężenia formaldehydu wzrasta. Istotną reakcję na poziom stężeń formaldehydu zaobserwowano przy liniowym obniżeniu napięcia wyjściowego z 1,5V do 0,8V. Czułość proponowanego czujnika poprawia się o współczynnik 1,09 w porównaniu z niepowlekanym podłożem szklanym. Działał również lepiej pod względem stabilności, czasu odpowiedzi i histerezy. Zaproponowany czujnik pozwala uniknąć kosztownego wytwarzania i procesu produkcyjnego czujnika optycznego, które są bardziej praktyczne w przypadku dużej produkcji przy zachowaniu dobrych parametrów wykrywania. Na podstawie wyników eksperymentu zaproponowane podejście wykazało przekonujący potencjał jako czujnik formaldehydu.
Rocznik
Strony
40--43
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
autor
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • University of Malaya, Kuala Lumpur 50603, Malaysia
  • University of Malaya, Kuala Lumpur 50603, Malaysia
Bibliografia
  • [1] N. Wang, X. Wang, Y. Jia, X. Li, J. Yu, and B. Ding, "Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection," Carbohydrate polymers, vol. 108, pp. 192-199, 2014.
  • [2] F. Lipari and S. J. Swarin, "Determination of formaldehyde and other aldehydes in automobile exhaust with an improved 2, 4-dinitrophenylhydrazine method," Journal of Chromatography A, vol. 247, pp. 297-306, 1982.
  • [3] T. Salthammer, S. Mentese, and R. Marutzky, "Formaldehyde in the indoor environment," Chemical reviews, vol. 110, pp. 2536-2572, 2010.
  • [4] I. Gunko, V. Hraniak, V. Yaropud, I. Kupchuk, and V. Rutkevych, "Optical sensor of harmful air impurity concentration," Przegląd elektrotechniczny. 2021. Vol. 97,№. 7. Р. 76-79., 2021.
  • [5] R. Barik, S. K. Tripathy, and M. Mohapatra, "Hierarchical pseudo-cubic hematite nanoparticle as formaldehyde sensor," Journal of Materials Science, vol. 49, pp. 5345-5354, 2014.
  • [6] B. Hanoune, T. LeBris, L. Allou, C. Marchand, and S. Le Calve, "Formaldehyde measurements in libraries: Comparison between infrared diode laser spectroscopy and a DNPH derivatization method," Atmospheric environment, vol. 40, pp. 5768-5775, 2006.
  • [7] S. Thorud, M. Gjølstad, D. G. Ellingsen, and P. Molander, "Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry," Journal of Environmental Monitoring, vol. 7, pp. 586-591, 2005.
  • [8] M. Sáenz, J. Alvarado, F. Pena-Pereira, S. Senra-Ferreiro, I. Lavilla, and C. Bendicho, "Liquid-phase microextraction with in drop derivatization combined with microvolume fluorospectrometry for free and hydrolyzed formaldehyde determination in textile samples," Analytica chimica acta, vol. 687, pp. 50-55, 2011.
  • [9] D. S. Brookstein, "Factors associated with textile pattern dermatitis caused by contact allergy to dyes, finishes, foams, and preservatives," Dermatologic clinics, vol. 27, pp. 309-322, 2009.
  • [10] H. R. B. A. Rahim, S. Manjunath, H. Fallah, S. Thokchom, S. W. Harun, W. S. Mohammed, et al., "Side coupling of multiple optical channels by spiral patterned zinc oxide coatings on large core plastic optical fibers," Micro & Nano Letters, vol. 11, pp. 122-126, 2016.
  • [11] M. H. Jali, H. R. A. Rahim, S. S. Hamid, M. A. M. Johari, H. H. M. Yusof, S. Thokchom, et al., "Microfiber loop resonator for formaldehyde liquid sensing," Optik, vol. 196, p. 163174, 2019.
  • [12] K. Tian, B. Tudu, and A. Tiwari, "Growth and characterization of zinc oxide thin films on flexible substrates at low temperatureusing pulsed laser deposition," Vacuum, vol. 146, pp. 483-491, 2017.
  • [13] A. Araújo, A. Pimentel, M. J. Oliveira, M. J. Mendes, R. Franco, E. Fortunato, et al., "Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms," Flexible and Printed Electronics, vol. 2, p. 014001, 2017.
  • [14] C. Zhang, Q. Luo, H. Wu, H. Li, J. Lai, G. Ji, et al., "Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells," Organic Electronics, vol. 45, pp. 190-197, 2017.
  • [15] C. Fung, J. Lloyd, S. Samavat, D. Deganello, and K. Teng, "Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique," Sensors and Actuators B: Chemical, vol. 247, pp. 807-813, 2017.
  • [16] H. A. Zain, M. Batumalay, H. R. A. Rahim, M. Yasin, and S. W. Harun, "HEC/PVDF coated microbottle resonators for relative humidity detection," Optik, vol. 232, p. 166534, 2021.
  • [17] H. H. M. Yusof, S. W. Harun, K. Dimyati, T. Bora, K. Sterckx, W. S. Mohammed, et al., "Low-cost integrated zinc oxide nanorod-based humidity sensors for arduino platform," IEEE Sensors Journal, vol. 19, pp. 2442-2449, 2018.
  • [18] M. H. Jali, H. R. A. Rahim, M. A. M. Johari, H. H. M. Yusof, B. Rahman, S. W. Harun, et al., "Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber," Optics & Laser Technology, vol. 120, p. 105750, 2019.
  • [19] M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, "A study of relative humidity fiber-optic sensors," IEEE Sensors Journal, vol. 15, pp. 1945-1950, 2014.
  • [20] H. R. B. A. Rahim, M. Q. B. Lokman, S. W. Harun, G. L. Hornyak, K. Sterckx, W. S. Mohammed, et al., "Applied light side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing," Journal of Nanophotonics, vol. 10, p. 036009, 2016.
  • [21] H. H. M. Yusof, M. H. Jali, M. A. M. Johari, K. Dimyati, S. W. Harun, M. Khasanah, et al., "Detection of formaldehyde vapor using glass substrate coated with zinc oxide nanorods," IEEE Photonics Journal, vol. 11, pp. 1-9, 2019.
  • [22] S. Muto, O. Suzuki, T. Amano, and M. Morisawa, "A plastic optical fibre sensor for real-time humidity monitoring," Measurement Science and Technology, vol. 14, p. 746, 2003.
  • [23] M. H. Jali, H. R. A. Rahim, M. A. M. Johari, A. Ahmad, H. H. M. Yusof, S. H. Johari, et al., "Integrating microsphere resonator and ZnO nanorods coated glass for humidity sensing application," Optics & Laser Technology, vol. 143, p. 107356, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e9f35fa-f87e-4388-b987-a1eba4cc4e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.