Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Significance: The biomechanical properties of the cornea are important for vision and ocular health. Optical coherence elastography (OCE) has the potential to improve our capacity to measure these properties. Aim: This study tested a static compression OCE method utilising a commercially available optical coherence tomography (OCT) device, to estimate the Young’s modulus of ex-vivo porcine corneal tissue. Approach: OCT was used to image corneal tissue samples before and during loading by static compression. The compressive force was measured with a piezoresistive force sensor, and tissue deformation was quantified through automated image analysis. Ten ex-vivo porcine corneas were assessed and the corneal thickness was also measured to assess the impact of corneal swelling. Results: An average (standard deviation) Young’s modulus of 0.271 (+/- 0.091) MPa was determined across the 10 corneas assessed. There was a mean decrease of 1.78 % in corneal thickness at the end of the compression series. These results showed that there was a moderate association between corneal thickness and the Young’s modulus recording (R2 = 0.274). Conclusions: Optical coherence elastography utilising clinical instrumentation, can reliably characterise the mechanical properties of the cornea. These results support the further investigation of the technique for in-vivo measurement of the mechanical properties of the human cornea.
Wydawca
Czasopismo
Rocznik
Tom
Strony
609--616
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- School of Engineering, University of Southern Queensland, Springfield, Queensland, Australia
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
autor
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
- School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
autor
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
autor
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
autor
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
Bibliografia
- [1] A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, K.M. Meek Characterization of age-related variation in corneal biomechanical properties J R Soc Interface, 7 (51) (2010), pp. 1475-1485.
- [2] D.P. Piñero, N. Alcón Corneal biomechanics: a review Clinical Experimental Optometry, 98 (2) (2015), pp. 107-116.
- [3] M.A. Kirby, et al. Optical coherence elastography in ophthalmology J Biomed Opt, 22 (12) (2017), Article 121720.
- [4] B.F. Kennedy, K.M. Kennedy, D.D. Sampson A review of optical coherence elastography: fundamentals, techniques and prospects IEEE J Sel Top Quantum Electron, 20 (2) (2014), pp. 272-288.
- [5] S. Kling, F. Hafezi Corneal biomechanics - a review Ophthalmic Physiological Optics, 37 (3) (2017), pp. 240-252.
- [6] M. Ahearne, Y. Yang, K.Y. Then, K.-K. Liu An indentation technique to characterize the mechanical and viscoelastic properties of human and porcine corneas Ann Biomed Eng, 35 (9) (2007), pp. 1608-1616.
- [7] H. Hatami-Marbini Viscoelastic shear properties of the corneal stroma J Biomech, 47 (3) (2014), pp. 723-728.
- [8] S. Kling, E.A. Torres-Netto, B. Spiru, W. Sekundo, F. Hafezi Quasi-Static optical coherence elastography to characterize human corneal biomechanical properties Investigative Ophthalmology Visual Sci, 61 (6) (2020), p. 29.
- [9] G. Lan, S.R. Aglyamov, K.V. Larin, M.D. Twa In vivo human corneal shear-wave optical coherence elastography Optom Vis Sci, 98 (1) (2021), pp. 58-63.
- [10] S. Wang, K.V. Larin Noncontact depth-resolved micro-scale optical coherence elastography of the cornea Biomed Opt Express, 5 (11) (2014), pp. 3807-3821.
- [11] M.D. Twa, et al. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking Biomed Opt Express, 5 (5) (2014), pp. 1419-1427.
- [12] S. Wang, K.V. Larin Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics Opt Lett, 39 (1) (2014), pp. 41-44.
- [13] C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, S. Marcos Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas Biomed Opt Express, 3 (3) (2012), pp. 473-487.
- [14] F. Zvietcovich, et al. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics Opt Lett, 45 (23) (2020), pp. 6567-6570.
- [15] R. McAuley, et al. Co-axial acoustic-based optical coherence vibrometry probe for the quantification of resonance frequency modes in ocular tissue Sci Rep, 12 (1) (2022), p. 18834.
- [16] S. Kling In-vivo measurement of ocular deformation in response to ambient pressure modulation Front Bioeng Biotechnol, 9 (2021), Article 759588.
- [17] M.R. Ford, W.J. Dupps, A.M. Rollins, A.S. Roy, Z. Hu Method for optical coherence elastography of the cornea J Biomed Opt, 16 (1) (2011), Article 016005.
- [18] A. Ramier, B. Tavakol, S.-H. Yun Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography Opt Express, 27 (12) (2019), pp. 16635-16649.
- [19] A. Ramier, et al. In vivo measurement of shear modulus of the human cornea using optical coherence elastography Sci Rep, 10 (1) (2020), p. 17366.
- [20] V.S. De Stefano, M.R. Ford, I. Seven, W.J. Dupps Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography Translational Vision Sci Technol, 9 (7) (2020), p. 4.
- [21] Z. Quince, D. Alonso-Caneiro, S.A. Read, M.J. Collins Static compression optical coherence elastography to measure the mechanical properties of soft contact lenses Biomed Opt Express, 12 (4) (2021), pp. 1821-1833.
- [22] Z. Quince, D. Alonso-Caneiro, S.A. Read, M.J. Collins Quantitative compressive optical coherence elastography using structural OCT imaging and optical palpation to measure soft contact lens mechanical properties Biomed Opt Express, 12 (12) (2021), pp. 7315-7326.
- [23] Z. Jin, Y. Zhou, M. Shen, Y. Wang, F. Lu, D. Zhu Assessment of corneal viscoelasticity using elastic wave optical coherence elastography J Biophotonics, 13 (1) (2020), Article e201960074.
- [24] F. Meng, X. Zhang, J. Wang, C. Li, J. Chen, C. Sun 3D strain and elasticity measurement of layered biomaterials by optical coherence elastography based on digital volume correlation and virtual fields method Appl Sci, 9 (7) (2019), p. 1349.
- [25] M. Singh, et al. Noncontact elastic wave imaging optical coherence elastography for evaluating changes in corneal elasticity due to crosslinking IEEE J Sel Top Quantum Electron, 22 (3) (2016), pp. 266-276.
- [26] H.-J. Ko, W. Tan, R. Stack, S.A. Boppart Optical coherence elastography of engineered and developing tissue Tissue Eng, 12 (1) (2006), pp. 63-73.
- [27] H. Hatami-Marbini, E. Etebu Hydration dependent biomechanical properties of the corneal stroma Exp Eye Res, 116 (2013), pp. 47-54.
- [28] M.S. Sridhar Anatomy of cornea and ocular surface Indian J Ophthalmol, 66 (2) (2018), p. 190.
- [29] D. Alonso-Caneiro, S.A. Read, M.J. Collins Automatic segmentation of choroidal thickness in optical coherence tomography Biomed Opt Express, 4 (12) (2013), pp. 2795-2812.
- [30] S.J. Chiu, X.T. Li, P. Nicholas, C.A. Toth, J.A. Izatt, S. Farsiu Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation Opt Express, 18 (18) (2010), pp. 19413-19428.
- [31] Z. Quince Optical coherence elastography for the measurement of anterior segment biomechanical properties Queensland University of Technol (2022).
- [32] G. Wollensak, E. Spoerl, T. Seiler Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking J Cataract Refractive Surgery, 29 (9) (2003), pp. 1780-1785.
- [33] A.A. Yazdi, et al. Characterization of non-linear mechanical behavior of the cornea Sci Rep, 10 (1) (2020), pp. 1-10.
- [34] Y. Zeng, J. Yang, K. Huang, Z. Lee, X. Lee A comparison of biomechanical properties between human and porcine cornea J Biomech, 34 (4) (2001), pp. 533-537.
- [35] S. Kling, S. Marcos Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests J Refract Surg, 29 (7) (2013), pp. 490-497.
- [36] A. Elsheikh, D. Alhasso, P. Rama Biomechanical properties of human and porcine corneas Exp Eye Res, 86 (5) (2008), pp. 783-790.
- [37] A. Elsheikh, D. Alhasso Mechanical anisotropy of porcine cornea and correlation with stromal microstructure Exp Eye Res, 88 (6) (2009), pp. 1084-1091.
- [38] H. Hatami-Marbini, E. Etebu, A. Rahimi Swelling pressure and hydration behavior of porcine corneal stroma Curr Eye Res, 38 (11) (2013), pp. 1124-1132.
- [39] Y.J. Cheong, B.R. Lee, K.E. Han, R.M. Jun Corneal thickness measurements using 2 kinds of spectral domain optical coherence tomography, pentacam, ultrasound pachymetry J Korean Ophthalmological Society, 57 (10) (2016), pp. 1527-1534.
- [40] J.M. Bland, D.G. Altman Calculating correlation coefficients with repeated observations: Part 2 - correlation between subjects BMJ, 310 (6980) (1995), p. 633.
- [41] S. Lind, P. Stansby, B. Rogers, P. Lloyd Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics Appl Ocean Res, 49 (2015), pp. 57-71.
- [42] B. Zhou, A.J. Sit, X.J.U. Zhang Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures Ultrasonics, 81 (2017), pp. 86-92.
- [43] D. Bronte-Ciriza, et al. Estimation of scleral mechanical properties from air-puff optical coherence tomography Biomed Opt Express, 12 (10) (2021), pp. 6341-6359.
- [44] S. Kling, H. Ginis, S. Marcos Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking Invest Ophthalmol Vis Sci, 53 (8) (2012), pp. 5010-5015.
- [45] A. Campigotto, S. Leahy, G. Zhao, R.J. Campbell, Y. Lai Non-invasive Intraocular pressure monitoring with contact lens Br J Ophthalmol (2019) (pp. bjophthalmol-2018-313714).
- [46] J.N. Webb, H. Zhang, A.S. Roy, J.B. Randleman, G. Scarcelli Technology, detecting mechanical anisotropy of the cornea using brillouin microscopy Translational Vision Sci, 9 (7) (2020), p. 26.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e9c5c72-3cdf-4b1a-acf1-43a6cafaf81c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.