PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects for the use of microwave energy in grain crop seeding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study looks at determining the main trends in the application of microwaves on plants in agricultural production in the processing of grain material, it provides examples of their effectiveness and an overview of the use of microwaves on plants available on the Russian market. Additionally, the research studied the experience and developments of leading scientists in the field of microwave radiation. Analysis of the available sources provided information on the positive effect of microwave radiation in the processing of crops. The use of microwaves on plants during drying destroys pathogens and bacteria, in particular, microwave processing of red lentils reduces grey mould damage by up to 30%. Positive results are also noted in the microwave processing of other crops, providing an increase in germination capacity of up to 7% and yield growth of up to 6%. The microwave plant market in Russia is represented mainly by dryers, and the use of microwaves on plants combining several functions of drying, disinfection, and pre-sowing stimulation.
Wydawca
Rocznik
Tom
Strony
74--78
Opis fizyczny
Bibliogr. 37 poz., fot.
Twórcy
  • Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  • Federal Agricultural Research Center of the North-East, Kirov, Russian Federation
  • Federal Agricultural Research Center of the North-East, Kirov, Russian Federation
  • Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  • Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  • Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
Bibliografia
  • ANAND A., GAREIPY Y., RAGHAVAN V. 2019. Fluidized bed and microwave-assisted fluidized bed drying of seed grade soybean. Drying Technology. Vol. 39. Iss. 4 p. 507–527. DOI 10.1080/07373937.2019.1709495.
  • ARABIAN F., RICE M., HU R.Q. 2020. Who's on first in 5G mobile networks: Equalizers or polarization diversity combiners? In: 2020 Intermountain Engineering, Technology and Computing (IETC) p. 1–6. DOI 10.1109/IETC47856.2020.9249121.
  • AVDEEVA V.N., BEZGINA I.A., VOLOSOVA E.V. 2016. Modern technology for improving seed quality. Agriculture Bulletin of Stavropol Region//Vestnik APK Stavropol'ya. No. S2 p. 116–118.
  • BASTRON A.V., FILIMONOVA N.G., MESHCHERYAKOV A.V., MIKHEEVA N.B., ERMAKOVA I.N. 2020. Technology of microwave treatment of cameline seeds and its economic efficiency. IOP Conference Series: Earth and Environmental Science. Vol. 42. Iss. 2, 022065. DOI 10.1088/1755-1315/421/2/ 022065.
  • BOSHKOVA I., VOLGUSHEVA N., TITLOV A., TITAR S., BOSHKOV L. 2019. Assessment of efficiency of drying grain materials using microwave heating. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy. No. 1(8) p. 78–85. DOI 10.15587/1729-4061.2019.154527.
  • BRODIE G., KHAN M.J., GUPTA D. 2019. Microwave soil treatment and plant growth. Crop production. London. IntechOpen. ISBN 978-1-78985-318-6. DOI 10.5772/intechopen.89684.
  • BUDNIKOV D., VASILIEV A. 2018. The use of microwave energy at thermal treatment of grain crops. In: Handbook of research on renewable energy and electric resources for sustainable rural development. Eds. V. Kharchenko, P. Vasant. Hershey, Penn-sylvania. IGI Global p. 475–499. DOI 10.4018/978-1-5225-3867-7.ch020.
  • DAS S., MUKHOPADHYAY A.K., DATTA S., BASU D. 2009. Prospects of microwave processing: An overview. Bulletin of Materials Science. Vol. 32. No. 1 p. 1–13. DOI 10.1007/s12034-009-0001-4.
  • FILATOVA I., AZHARONOK V., KADYROV M., BELJAVSKY V., SERA B., HRUSKOVA I., SPATENKA P., SERY M. 2010. RF and microwave plasma application for pre-sowing caryopsis treatments. Publications of the Astronomical Observatory of Belgrade. Vol. 89 p. 289–292.
  • GANEEV I., KARIMOV K., FAYZRAKHMANOV S., MASALIMOV I., PERMYAKOV V. 2020. Intensification of the drying process of small seed oilseeds using microwave electromagnetic radiation. Acta Agriculturae Slovenica. Vol. 115. No. 2 p. 261–271. DOI 10.14720/aas.2020.115.2.1359.
  • HEMIS M., CHOUDHARY R., BECERRA-MORA N., KOHLI P., RAGHAVAN V. 2016. Modelling of microwave assisted hot-air drying and microstructural study of oilseeds. International Journal of Agricultural and Biological Engineering. Vol. 9. No. 6 p. 167–177. DOI 10.3965/j.ijabe.20160906.2442.
  • JAFARI H., KALANTARI D., AZADBAKHT M. 2018. Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying. Energy. Vol. 142 p. 647–654. DOI 10.1016/j.energy.2017.10.065.
  • JAKUBOWSKI T. 2015. Evaluation of the impact of pre-sowing microwave stimulation of bean seeds on the germination process. Agricultural Engineering. Vol. 19. DOI 10.14654/ir.2015. 154.120.
  • KAKATI B., BUJARBARUA S., BORA D. 2019. An eco-friendly, pollution-free process for seed germination and plant yield. AIP Conference Proceedings. Vol. 2091, 020021P. DOI 10.1063/ 1.5096512.
  • KELMENDI M., KADRIU S., SADIKU M., ALIU M., SADRIU E., HYSENI S.M. 2018. Assessment of drinking water quality of Kopiliq village in Skenderaj, Kosovo. Journal of Water and Land Development. Vol. 39 p. 61–65. DOI 10.2478/jwld-2018-0059.
  • KHAN M.J., BRODIE G. 2018. Microwave weed and soil treatment in rice production. Rice crop –current developments. InTech p. 99–127. DOI 10.5772/intechopen.77952.
  • KRETOVA Y., TSIRULNICHENKO L., NAUMENKO N., POPOVA N., KALININA I. 2018. The application of microwave treatment to reduce barley contamination. Agronomy Research. Vol. 16. No. 5 p. 2079–2087. DOI 10.15159/AR.18.198.
  • LOZANO J.C., LABERRY R., BERMUDEZ A. 1986. Microwave treat-ment to eradicate seed-borne pathogens in cassava true seed. Journal of Phytopathology. Vol. 117. No. 1 p. 1–8. DOI 10.1111/j.1439-0434.1986.tb04353.x.
  • MADERA C., HOJATMADANI M., CRANE N., REED K. 2017. Thermal perception of skin using optical projections. In: ASME International Mechanical Engineering Congress and Exposition. Vol. 58431 p. V008T10A042. DOI 10.1115/IMECE2017-72025.
  • MICCIO M., PIERRI R., CUCCURULLO G., METALLO A., BRACHI P. 2020. Process intensification of tomato residues drying by microwave heating: Experiments and simulation. Chemical Engineering and Processing – Process Intensification. Vol. 156, 108082. DOI 10.1016/j.cep.2020.108082.
  • MORENO A., HERNÁNDEZ R., BALLESTEROS I. 2016. Microwave drying of seeds and vegetable products: A viable option for Ecuador. 3rd Global Congress on Microwave Energy Application (GCMEA) p. 25–26. DOI 10.4995/Ampere2019.2019. 9831.
  • MORENO Á.H., HERNÁNDEZ MAQUEDA R., BALLESTEROS I. 2017. Microwave drying of seeds of agricultural interest for Ecuador. Ampere Newsletter. Iss. 92 p. 28–32.
  • MOSKOVSKIY M. 2013. Complex research of using microwave in processing grains and plants materials for agriculture. Journal of Life Sciences. Vol. 7. No. 8 p. 839–845. DOI 10.17265/ 1934-7391/2013.08.009.
  • NAIR G.R., LI Z., GARIEPY Y., RAGHAVAN V. 2011. Microwave drying of corn (Zea mays L. ssp.) for the seed industry. Drying Technology. Vol. 29. No. 11 p. 1291–1296. DOI 10.1080/ 07373937.2011.591715.
  • NELSON S.O. 1987. Potential agricultural applications for RF and microwave energy. Transactions of the ASAE. Vol. 30. No. 3 p. 818–831.
  • PIETRUSZEWSKI S., MUSZYŃSKI S., DZIWULSKA A. 2007. Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds [selected methods and responses]. International Agrophysics. Vol. 21. No. 1 p. 95–100.
  • REDDY M.B., RAGHAVAN G.S.V., KUSHALAPPA A.C., PAULITZ T.C. 1998. Effect of microwave treatment on quality of wheat seeds infected with Fusarium graminearum. Journal of Agricultural Engineering Research. Vol. 71. No. 2 p. 113–117. DOI 10.1006/jaer.1998.0305.
  • RIFNA E.J., RAMANAN K.R., MAHENDRAN R. 2019. Emerging technology applications for improving seed germination. Trends in Food Science & Technology. Vol. 86 p. 95–108. 10.1016/ j.tifs.2019.02.029.
  • SRIKANT S.S., MUKHERJEE P.S., RAO R.B. 2013. Prospects of microwave energy in material and mineral processing. Turkish Journal of Engineering, Science and Technology. Vol. 2 p. 23–31.
  • SURYOPUTRO N., SOETOPO W., SUHARTANTO E.S., LIMANTARA L.M. 2018. Evaluation of infiltration models for mineral soils with different land uses in the tropics. Journal of Water and Land Development. Vol. 37 p. 153–160. DOI 10.2478/jwld-2018-0034.
  • TAHERI S., BRODIE G., GUPTA D. 2019. Effectiveness of a microwave fluidised bed dryer in eradication of seed-borne botrytis grey mold of lentils. Conference: Ampere 2019. 17th International Conference on Microwave and High Frequency Heating. Editorial Universitat Politècnica de València p. 226–237. 10.4995/Ampere2019.2019.9635.
  • TAHERI S., BRODIE G.I., GUPTA D., JACOB M.V. 2020a. Afterglow of atmospheric non-thermal plasma for disinfection of lentil seeds from Botrytis Grey Mould. Innovative Food Science & Emerging Technologies. Vol. 66, 102488. 10.1016/j.ifset. 2020.102488.
  • TAHERI S., BRODIE G., GUPTA D. 2020b. Fluidisation of lentil seeds during microwave drying and disinfection could prevent detrimental impacts on their chemical and biochemical characteristics. LWT p. 109534. DOI 10.1016/j.lwt.2020.109534.
  • TAHERI S., BRODIE G., GUPTA D. 2020c. Microwave fluidised bed drying of red lentil seeds: Drying kinetics and reduction of botrytis grey mold pathogen. Food and Bioproducts Processing. Vol. 119 p. 390–401. DOI 10.1016/j.fbp.2019.11.001.
  • VADIVAMBAL R., DEJI O.F., JAYAS D.S., WHITE N.D.G. 2010. Disinfestation of stored corn using microwave energy. Agriculture and Biology Journal of North America. Vol. 1. No. 1 p. 18–26.
  • VENDIN S.V., SAENKO YU.V., KITAEVA O.V., SOLOVIEV S.V., KAZAKOV K.V., ULYANTSEV YU.N. 2020. Results of experimental studies on using MWF electromagnetic field energy for presowing treatment of grain crops. International Journal of Advanced Science and Technology. Vol. 29. No. 3 p. 3747–3763.
  • WARCHALEWSKI J.R., GRALIK J., GRUNDAS S., PRUSKA-KĘDZIOR A., KĘDZIOR Z. 2011. Changes in microwave-treated wheat grain properties. Advances in Induction and Microwave Heating of Mineral and Organic Materials. Vol. 22 p. 503–530. DOI 10.5772/13323.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e9c13a3-ac49-4c01-b31b-7b1e911c2501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.