PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie chromatografii gazowej do rozdzielania i oznaczania lotnych związków azoto-organicznych (LZN) w próbkach wody i ścieków

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of gas chromatography for separation and guantification of Volatile Nitrogen-containing Compounds (VNCs) in samples of water and wastewater
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano przeglądu i porównania metod opartych na chromatografii gazowej do oznaczania lotnych związków azoto-organicznych (LZN) w próbkach wody i ścieków. Przedstawione zostały metodyki analityczne wykorzystujące zarówno detektory selektywne tj. detektor azotowo-fosforowy (NPD), detektor powierzchniowej jonizacji (SID), detektor chemiluminescencyjny azotu (CLND), detektor wychwytu elektronów (ECD) jak i detektorów uniwersalnych typu spektrometr mas (MS), tandemowy spektrometr mas (MS/MS) oraz detektor płomieniowo jonizacyjny (FID). Ze względu na wysoką toksyczność oraz negatywne oddziaływanie LZN na środowisko, konieczne staje się opracowanie nowych metod analitycznych, które umożliwią oznaczenie związków na niskich poziomach stężeń. Spośród dostępnych metod największą popularnością i największym potencjałem do różnorodnych zastosowań jest chromatografia gazowa sprzężona ze spektrometrią mas, ponieważ w połączeniu z odpowiednią techniką izolacji lub/i wzbogacania analitów, zapewnia niskie granice wykrywalności względem większości związków z grupy LZN. Pozostałe detektory wykazują wysoką selektywność dla mniejszej liczby związków LZN.
EN
The paper presents a review and comparison of gas chromatographic methods for determination of Volatile Nitrogen-containing Compounds (VNCs) in samples of water and wastewater. The analytical methods that uses both selective detectors such as Nitrogen-Phosphorus Detector (NPD), Surface lonization Detector (SID), Nitrogen Chemiluminescence Detector (CLND), Electron Capture Detector (ECD) and universal detectors: Mass Spectrometry (MS), Tandem Mass Spectrometry (MS/MS) and Flame lonization Detector (FID) were described. Due to the high toxicity and negative effects of VNCs on the environment, it becomes necessary to develop new analytical methods that allow determination of compounds ar Iow concentration level. Among all available methods, the most popular and the greatest potential for a variety of applications have gas chromatography coupled with mass spectrometry, because in combination with techniques of isolation and / or enrichment of the analytes, provide Iow limits of detection for most VNCs. Other detectors have a high selectMty for a smaller number of VNCs compounds.
Czasopismo
Rocznik
Strony
73--86
Opis fizyczny
Bibliogr. 95 poz., tab.
Twórcy
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
Bibliografia
  • 1. US EPA Compendium of methods for the determination of toxic organie compounds in ambient air, method TO-14, EPA-600/4-84-041, US Environmental Procetion Agency, Research Tringle Park, NC, 1984.
  • 2. Suez Environment, Internal report, 2007
  • 3. MOE. (2000). Ontario Ministry of the Environment and Energy. Regulation Made Under the Ontario Water Resources. Act: Drinking Water Protection—Larger Water Works.
  • 4. DHS. (2002). Califomia Department of Health Services; NDMA in California Drinking Water,
  • 5. Water Cjuality Standards, Establishment of Numeric Crlteria for Priority Toxic Pollutants, States Compliance. Fed. Regist. 246 (1992) 60848.
  • 6. V.Y. Taguchi, S.W.D. Jenkins, D.T. Wang, J.F.P. Palmentier, EJ. Reiner, Determination of N-nitrosodimethylamine by isotope dilution, high-resolution mass spectrometry, Can. J. Appl. Spectrosc. 39 (1994) 87.
  • 7. M. Ulman, Z. Chilmonczyk, Volatile Organie Compounds-components, sources, determination. A review., Chem. Anal. 52 (2007) 173.
  • 8. B. Zielińska, Atmospheric transformation of diesel emissions, Exp. Toxicol. Pathol., 57 (2005) 31.
  • 9. G. Boczkaj, A. Przyjazny, M. Kamiński, New Procedures for Control of Industńal Effluents Treatment Processes. Ind Eng Chem Res. 53'(2014) 1503.
  • 10. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics ofvolatile organie compounds emission profiles from hot road bitumens. Chemosphere 104 (2014) 23.
  • 11. G. Boczkaj, M. Jaszczołt, M. Kamiński, Badania emisji lotnych związków organicznych z asfaltów drogowych z wykorzystaniem techniki dynamicznej analizy fazy nadpowierzchniowej i chromatografii gazowej sprzężonej ze spektrometrią mas (DHS - GC - MS), Cam. Sep. 3 (2011) 35.
  • 12. K. Lissitsyna, S. Huertas, L.C. Quintero, L.M. Polo, Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography, Fuel 104 (2013) 752.
  • 13. T. Dijkmans, M.R. Djokic, K.M. Van Geem, G.B. Marin, Comprehensive compositional analysis ofsulfur and nitrogen containing compounds in shale oil using GC, GC-FID/SCD/NCD/TOF-MS, Fuel 140 (2015)398.
  • 14. A. Zhanga, Y. Li, Y. Songa, J. Lva, J. Yang, Characteńzation of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors duńng disinfection processes using free chlorine and chłonne dioxide, J. Hazard. Mater. 276 (2014) 499.
  • 15. W.A. Mitch, A.C. Gerecke, D.L. Sedlak, A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater, Water Res. 37 (2003) 3733.
  • 16. S.H. Park, LP. Padhye, P. Wang, M. Cho, J.H. Kim, C.H. Huang, H-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlohnation, and pre-oxidation, J. Hazard. Mater. 282 (2015) 133.
  • 17. G. Boczkaj, M. Kamiński, Zastosowanie chromatografii gazowej z detektorami selektywnymi w analityce lotnych związków siarki i azotu, Cam. Sep. 3 (2011) 51.
  • 18. E. Pehlivanoglu-Mantas, D.L. Sedlak, Measurement of dissoNed organie nitrogen forms in wastewater effluents: Concentrations, size distribution and NDMA formation potential, Water Res. 42 (2008) 3890.
  • 19. M. Lee, Y. Lee, F. Soltermann, U. von Gunten, Analysis of N-nitrosamines and other nitro(so)compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction, Water Res. 47 (2013) 4893.
  • 20. E. Pehlivanoglu-Mantas, D.L. Sedlak, Measurement of dissolved organie nitrogen forms in wastewater effluents: Concentrations, size distribution and NDMA formation potential, Water Res. 42 (2008) 3890-3898.
  • 21. Y. Suna, L. Lianga, X. Zhaoa, L. Yua, J. Zhanga, G. Shib, T. Zhou, Determination ofaromatic amines in water samples by capillary electrophoresis with amperometric detection, Water Res. 43 (2009) 41.
  • 22. S. Mishra, V. Singh, A. Jain, K.K. Verma, Simultaneous determination of ammonia, aliphatic amines, aromatic amines and phenols at pg f1 levels in environmental waters by solid-phase extraction of their benzoyl dehvatives and gas chromatography-mass spectrometry, Analyst 126 (2001) 1663.
  • 23. L. Cai, Y. Zhao, S. Gong, L. Dong, C. Wu, Use of a Nowel Sol-Gel Dibenzo-18-Crown-6 Solid-Phase Microextraction Fiber and a New Derivatizing Reagent for Determination of Aliphatic Amines in Lake Water and Humań Urine, Chromatographia 58 (2003) 615.
  • 24. A. Karmen, L. Giuffrida, Enhancement of the response of the hydrogen flame ionization detector to compounds containing halogens and phosphorus, Naturę 201 (1964) 1204.
  • 25. W.A. Aue, C.W. Gehrke, R.C. Tmdle, D.L. Stalling, CD. Ruyle, Application ofthe Alkali-Flame Detector to Nitrogen Containing Compounds, J. Gas Chromarogr. 5 (1967) 381.
  • 26. E. D. Conte, Eugene F. Barry, Alkali flame ionization detector for gas chromatography using an alkali salt aerosol a the enhancement source, J.Chromatogr. A 644 (1993) 349.
  • 27. B. Kolb, J. Bischoff, A New Design of a Thermionic Nitrogen and Phosphorus Detector for GC, J. Chrom. Sci. 12 (1974) 625.
  • 28. CA. Burgett, D.H. Smith, H.B. Bente, The Nitrogen-Phosphorus Detector and Its Applications in Gas Chromatography., J. Chromatogr. 134 (1977) 57.
  • 29. H. Snijders, H-G. Janssen, C. Cramers, Design and optimization of a novel type nitrogen-phosphorus detector for capillary gas chromatography, J. Chromatogr. A 732 (1996) 51.
  • 30. H. Kataoka, Gas chromatography of amines as vańous derivatives, J. Chromatogr. Lib. 70 (2005) 364.
  • 31. H. Kataoka, Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis, J. Chromatogr. A 733 (1996) 19.
  • 32. E. Baltussen, F. David, P. Sandra, H-G. Janssen, C. Cramers, C, Capillary GC determination of amines in aqueous samples using sorptive preconcentration on polydimethylsiloxane and polyacrylate phases, J. High Resolut. Chromatogr. 21 (1998) 645.
  • 33. K. Jacob, C. Falkner, W. Vogt, Derivatization method for the high-sensitive determination of amines and amino acids as dimethylthiophosphinic amides with the alkali flame-ionization detector, J. Chromatogr. A167 (1978) 67.
  • 34. M. Dalene, G. Skarping, H. Tinnerberg, Biological monitoring of hexamethylene diisocyanate by determination of 1,6-hexamethylene diamine as the tńfluoroethyl chloroformate derivative using capillary gas chromatography with thermoionic and selective-ion monitoring, J. Chromatogr. B 656 (1994) 319.
  • 35. M. Abalos, J.M. Bayona, F. Ventura, Development of a solid-phase microextraction GC-NPD procedurę for the determination offree wlatile amines in wastewater and sewage-polluted waters, Anal. Chem. 71 (1999) 3531.
  • 36. Y. Hwang, T. Matsuo, K. Hanaki, N. Suzuki, Identification and quantification of sulfur and nitrogen containing compounds in wastewater, Wat. Res. 29 (1995) 711.
  • 37. C. Maris , A. Laplanche , J. Morvan , M. Bloquel, Static headspace analysis of aliphatic amines in aqueous samples, J. Chromatogr. A 846 (1999) 331.
  • 38. M.K. Abdul-Rashid, J.P. Riley, M.F. Fitzsimons, G.A. Wolff, Determination ofvolatile amines in sediment and water samples, Anal. Chim. Acta 252 (1991) 223.
  • 39. Method 607, Nitrosamines. Code ofFederal Regulations: Protection ofthe Environment, Part 136, Title 40, US GPO: Washington, DC, 1982.
  • 40. California Department of Health Services: Drinking Water Notification Levels and Response Levels.
  • 41. J.E. Grebel, I.H. Suffet, Nitrogen-phosphorus detection and nitrogen chemiluminescence detection of wlatile nitrosamines in water matńces: Optimization and performance compańson, J. Chromatogr. A 1175(2007) 141.
  • 42. J. E. Grebel, CC Young, I.H. Suffet, Solid-phase microextraction of N-nitrosamines, J. Chromatogr. A 1117(2006)
  • 43. U.Kh. Rasulev, U. Khasanov, V.V. Palitcin, Surface-ionization methods and devices of indication and Identification of nitrogen-containing base molecules, J. Chromatogr. A 896 (2000) 3.
  • 44. T. Fujii, High-performance emitters for use in a surface ionization detector for gas chromatography, J. Chromatogr. A 355 (1986) 375.
  • 45. H. Kishi, T. Fujii, G. Sato, Surface ionization detector with a supersonic free jet for gas chromatography some applications, J. Chromatogr. A 750 (1996) 335.
  • 46. B. Kolb, M. Auer, P. Pospisil, Reactlon mechanism In an ionization detector with tunable selectMty for carbon, nitro gen and phosphorus, J. Chromatogr. Sci. 15 (1977) 53.
  • 47. H. Kishi, T. Fujii, A Surface lonization Detector for Gas Chromatography: Use of a Supersonic Free Jet, Anal. Chem. 68 (1996) 2776.
  • 48. E. Ya. Zandberg, A. G. Kamenev, V. I. Paleev, U. K. Rasulev, Visokochuvstvitelny detector aminov iikh proizwdnikh, Zhurnal Analyticheskoy Khimii 35 (1980) 1188.
  • 49. W. Li, D. Wu, S. Chen, H. Peng, Y. Guan, Study of the surface ionization detector for gas chromatography, J. Chromatogr. A 1218 (2011) 6812.
  • 50. K. Watanabe, H. Hattori, M. Nishikawa, A. Ishii, T. Kumazawa, H. Seno, O. Suzuki, Simultaneous determination of cocaethylene and cocaine in blood by gas chromatography with surface ionization detection, Chromatographia 44 (1997) 55.
  • 51. H. Hattori, T. Yamada, O. Suzukib, Gas chromatography with surface ionization detection in forensic analysis, J. Chromatogr. A 674 (1994) 15.
  • 52. S. Takahashi, F. Nagamura, M. Sasaki, T. Fujii, Gas chromatography with surface ionization detection of nitro pesticides, Chem. Pap. 63 (2009) 613.
  • 53. U.Kh. Rasulev, E.G. Nazarov, G.B. Khudaeva, Chromatographic determination of tracę amounts of amines using a surface ionization detector, J. Chromatogr. A 704 (1995) 473.
  • 54. T. Fujii, Surface ionization organie mass spectrometry: applications in gas chromatography, Eur. J. Mass Spectrom. 2 (1996) 263.
  • 55. J.C. Greaves, D. Garvin, Chemically induced molecular excitation: excitation spectrum of the nitńc oxide-ozone system. J. Chem. Phys. 30 (1959) 348.
  • 56. D.H. Fine, D. Lieb, F. Rufeh, Principle ofoperation ofthe thermal energy analyzer for the tracę analysis ofvolatile and non-volatile N-nitroso compounds, J. Chromatogr. A107 (1975) 351.
  • 57. B.A. Tomkin, W.H. Griest, CE. Higgins, Determination of N-nitrosodimethylamine at part-per-trillion levels in drinking waters and contaminated groundwaters, Anal. Chem. 67 (1995) 4387.
  • 58. B.A. Tomkins, W.H. Griest, Determinations of N-nitrosodimethylamine at part-per-thllion concentrations in contaminated groundwaters and drinking waters featuhng carbon-based membranę extraction disks, Anal. Chem. 68 (1996) 2533.
  • 59. M. Alber, H. B. Bohm, J. Brodesser, J. Feltes, K. Levsen, H. F. Scholer, Determination of nitrophenols in rain andsnow, Fresenius Z Anal Chem 334 (1989) 540.
  • 60. K. Blau, J.M. Halket (Eds.), Handbook of Derivatives for Chromatography, Wiley, Chichester, 1993.
  • 61. T.C Schmidt , M. Less , R. Haas , E. von Low, K. Steinbach , G. Stork, Gas chromatographic determination of aromatic amines in water samples after solid-phase extraction and dehvatization with iodine, I. Derivatization. J. Chromatogr. A 810 (1998) 161.
  • 62. M. Less , T.C. Schmidt, E. von Low , G. Stork, Gas chromatographic determination of aromatic amines in water samples after solid-phase extraction and derisiatization with iodine, II. Enrichment, J. Chromatogr. A 810 (1998) 173.
  • 63. R. Haas, T. C. Schmidt, K. Steinbach, E. von Low, Dematization of aromatic amines for analysis in ammunition wastewater, II: Dematization of methyl anilines by iodination with a Sandmeyer-like reaction, Fresenius J. Anal. Chem. 359 (1997) 497.
  • 64. T.C. Schmidt, R. Haas, K. Steinbach, E. von Low, Dematization of aromatic amines for analysis in ammunition wastewater, I. Derivatization via bromination of the aromatic ring, Fresenius J. Anal. Chem. 357 (1997) 909.
  • 65. I. V. Gruzdeva, M. V. Alferovab, B. M. Kondratenoka, I. G. Zenkevich, Ouantification of Chloroanilines in Drinking Water by Gas Chromatography as Bromo Derivatives, J. Anal. Chem. 66 (2011) 955.
  • 66. S. Calderara, D. Gardebas, F. Martinez, Solid phase micro extraction coupledwith on-column GC/ECD for the post-blast analysis of organie explosives, Forensic Sci. Int. 137 (2003) 6.
  • 67. X. Li, J. Chen, L. Du, Analysis of chloro- and nitrobenzenes in water by a simple polyaniline-based solid-phase microextraction coupled with gas chromatography, J. Chromatogr. A 1140 (2007) 21.
  • 68. W. Guan, F. Xu, W. Liu, J. Zhao, Y. Guan, A new poly(phthalazine ether sulphone ketonej-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aąueous samples, J. Chromatogr. A 1147 (2007) 59
  • 69. Y. Huang, Y-C. Yang, Y. Yuen Shu, Analysis of semi-volatile organie compounds in aqueous samples by microwave-assisted headspace solid-phase microextraction coupled with gas chromatography-electron capture detection, J. Chromatogr. A 1140 (2007) 35.
  • 70. B. Yu, Y. Song, L. Han, H. Yu, Y. Liu, H. Liu, Optimizations of packed sorbent and inlet temperaturę for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organie compounds in water, J. Chromatogr. A1356 (2014) 221.
  • 71. M.A. Farajzadeh, N. Nouri, Simultaneous dehvatization and air-assisted liquid~liquid microextraction of some aliphatic amines in different acueous samples followed by gas chromatography-flame ionization detection, Anal. Chim. Acta 775 (2013) 50.
  • 72. J. Olejniczak, J. Staniewski, Enrichment of phenols from water with in-situ dematization by in-tube solid phase microextraction-solvent desorption prior to off-line gas chromatographic determination with large-volume injection, Anal. Chim. Acta 588 (2007) 64.
  • 73. B. Jurado-Sanchez, E. Ballesteros, M. Gallego, Comparison ofthe sensitMties ofseven N-nitrosamines in pre-screened waters using an automated preconcentration system and gas chromatography with different detectors, J. Chromatogr., A 1154 (2007) 66.
  • 74. M. Kaykhaiia, S. Nazari, M. Chamsaz, Determination of aliphatic amines in water by gas chromatography using headspace solvent microextraction, Talanta 65 (2005) 223.
  • 75. F. Kamarei, H. Ebrahimzadeha, Y. Yamini, Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples, J. Hazard. Mater. 178 (2010) 747.
  • 76. H. Ebrahimzadeh, Y. Yamini ,F. Kamarei, S. Shariati, Homogeneous liquid-liquid extraction of tracę amounts of mononitrotoluenes from waste water samples, Anal. Chim. Acta 594 (2007) 93.
  • 77. H. Ebrahimzadeha, Y. Yamini, F. Kamarei, Optimization of dispersive liquid-liquid microextraction combined with gas chromatography for the analysis of nitroaromatic compounds in water, Talanta 79 (2009) 1472.
  • 78. J-Y. Horng, S-D. Huang, Determination ofthe semi-volatile compounds nitrobenzene, isophorone, 2,4-dinitrotoluene and 2,6-dinitrotoluene in water using solid-phase microextraction with a polydimethylsiloxane- coated fibrę, J. Chromatogr. A 678 (1994) 313.
  • 79. H. Ebrahimzadeh, Y. Yamini, F. Kamarei, M. Khalili-Zanjan, Application of headspace solvent microextraction to the analysis of mononitrotoluenes in waste water samples, Talanta 72 (2007) 193.
  • 80. E. Psillakis, N. Kalogerakis, Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples, J. Chromatogr. A 907 (2001) 211.
  • 81. S. Jonsson, L. Gustavsson, B. van Bavel, Analysis of nitroaromatic compounds in complex samples using solid-phase microextraction and isotope dilution quantification gas chromatography-electron-capture negative ionisation mass spectrometry, J. Chromatogr. A 1164 (2007) 65.
  • 82. US Environmental Protection Agency, Method 3535A SW-846, Solid-Phase Extraction (SPE), Office of Solid Waste, Washington, DC, 1998.
  • 83. M. Berg, J. Bolotin, T.B. Hofstetter, Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS, Anal. Chem. 79 (2007) 2386.
  • 84. X-T. Peng, X. Zhao, Y-Q. Feng, Preparation of phenothiazine bonded sillea gel as sorbents of solid phase extraction and their application for determination of nitrobenzene compounds in environmental water by gas chromatography-mass spectrometry, J. Chromatogr. A 1218 (2011) 9314.
  • 85. C. Cortadaa, L. Vidal, A. Canals, Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry, Talanta 85 (2011) 2546.
  • 86. E. Psillakis, N. Kalogerakis, Application of soNent microextraction to the analysis of nitroaromatic explosives in water samples, J. Chromatogr. A 907 (2001) 211.
  • 87. E. Psillakis, D. Mantzavinos, N. Kalogerakis, Development ofahollow fibrę liquid phase microextraction method to monitor the sonochemical degradation ofexplosives in water, Anal. Chim. Acta 501 (2004) 3.
  • 88. H. Zhang, S. Ren, J. Yu, M. Yang, Oceurrence of selected aliphatic amines in source water of major citiesin China, J. Environ. Sci. 24 (2012) 1885.
  • 89. L. Rubio, S. Sanllorente, L.A. Sarabia, M.C. Ortiz, Optimization of a headspace solid-phase microextraction and gas chromatography/mass spectrometry procedurę for the determination of aromatic amines in water and in polyamide spoons, Chemometr. Intell. Lab. 133 (2014) 121.
  • 90. O Deng, N. Li, L. Wang, X. Zhang, Development of gas chromatography-mass spectrometry following headspace single-drop microextraction and simultaneous deńvatization for fast determination of short-chain aliphatic amines in water samples, J. Chromatogr. A1131 (2006) 45.
  • 91. W. Fenga, R. Jianga, B. Chena, G. Ouyang, Fiber-assisted emulsification microextraction coupled with gas chromatography-mass spectrometry for the determination of aromatic amines in aqueous samples, J. Chromatogr. A 1361 (2014) 16.
  • 92. R. Pozzi, P. Bocchini, F. Pinelli, G.C. Galletti, Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry, J. Chromatogr. A 1218 (2011) 1808.
  • 93. J.W. Munch, M.V. Bassett, In, National Exposure Research Laboratory, Office of Research and Development, US EPA., Cincinnati, Ohio, 2004.
  • 94. J.W. Munch, M.V. Bassett, Method development for the analysis of N-nitrosodimethylamine and other N-nitrosamines in dńnking water at low nanogram/liter concentrations using solid-phase extraction and gas chromatography with chemical ionization tandem mass spectrometry, J. AOAC Int. 89 (2006) 486.
  • 95. J.A. McDonald, N. B. Harden, L. D. Nghiem, S.J. Khan, Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry, Talanta 99 (2012) 146
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e99b41a-f68e-4372-9ca0-03e297abde2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.