PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recycling of asbestos-cement waste – an opportunity or a threat?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Asbestos-cement waste from roof coverings and facades are classified as hazardous materials and should be successively removed from buildings. The current management of these wastes is limited to their controlled depositing in landfills, which does not ultimately solve the problem of their impact on the environment in the future. The article presents the current state of disposal of asbestos in Poland, with particular emphasis on the Silesian Voivodeship. The literature reports on the methods of neutralizing this type of waste and the possibility of their recycling were analyzed. It was found that the most popular way of recycling asbestos waste is thermal treatment, and the least effective - chemical treatment. Unfortunately, legal barriers prevent the spread of these solutions in the country in practice, despite the fact that safe methods of recycling asbestos-cement products are known.
Wydawca
Rocznik
Strony
10--18
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Asbestos Base: https://bazaazbestowa.gov.pl/pl/ (accessed on 07 February 2022)
  • 2. Asbestos Data Sheet - Mineral Commodity Summaries 2020, U.S. Geological Survey, Mineral Commodity Summaries, January 2020: file:///D:/Desktop/mcs2020- asbestos.pdf (accessed on 13 February 2022)
  • 3. Dong, W., Li, W., Tao, Z., 2021. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet, Resources, Conservation & Recycling, 172, 105664, DOI: 10.1016/j.resconrec.2021.105664
  • 4. Frank, A. L., 2020. Global use of asbestos - legitimate and illegitimate issues, Journal of Occupational Medicine and Toxicology, 15:16, DOI: 10.1186/s12995-020-00267-y
  • 5. Gualtieri, A. F., 2013. Recycling asbestos- containing material (ACM) from construction and demolition waste (CDW): Handbook of Recycled Concrete and Demolition Waste, 500-525, DOI: 10.1533/9780857096906.4.500
  • 6. Gualtieri, A. F., Boccaletti, M., 2011. Recycling of the product of thermal inertization of cement–asbestos for the production of concrete, Construction and Building Materials, 25, 3561-3569, DOI: 10.1016/j.conbuildmat.2011.03.049
  • 7. Gualtieri, A. F., Tartaglia, A., 2000. Thermal decomposition of asbestos and recycling in traditional ceramics, Journal of the European Ceramic Society, 20, 1409-1418.
  • 8. Gualtieri, A. F., Veratti, L., Tucci, A., Esposito, L., 2012. Recycling of the product of thermal inertization of cement-asbestos in geopolymers, Construction and Building Materials, 31, 47-51, DOI: 10.1016/j.conbuildmat.2011.12.087
  • 9. Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136, DOI: 10.17512/bozpe.2019.1.14
  • 10. Hui, T., Sun, H. J., Peng, T. J., 2021. Preparation and characterization of cordieritebased ceramic foams with permeable property from asbestos tailings and coal fly ash, Journal of Alloys and Compounds, 885, DOI: 10.1016/j.jallcom.2021.160967 International Ban Asbestos Secretariat: http://ibasecretariat.org/graphics_page.php (accessed on 13 February 2022)
  • 11. Iwaszko, J., Lubas, M., Sitarz, M., Zajemska, M., Nowak, A., 2021. Production of vitrified material from hazardous asbestos-cement waste and CRT glass cullet, Journal of Cleaner Production, 317, DOI: 10.1016/j.jclepro.2021.128345
  • 12. Iwaszko, J., Przerada, I., Zawada, A., 2017. Microstructural aspects of high-energy milling of asbestos-cement materials, Ceramic Materials, 69, 2, 84-89.
  • 13. Jura, J., 2020. Influence of type of biomass burned on the properties of cement mortar containing fly ash, Construction of optimized energy potential, 9, 1, 77-82, DOI: 10.17512/bozpe.2020.1.09
  • 14. Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708: https://doi.org/10.3390/ma14216708
  • 15. Kumar Goyal, R., Agarwal, V., Gupta, R., Rathore, K., Somani, P., 2021. Optimum utilization of ceramic tile waste for enhancing concrete properties, Materials Today: Proceedings, 49, 1769-1775, DOI: 10.1016/j.matpr.2021.08.011
  • 16. Kusiorowski, R., Zaremba, T., Piotrowski, J., Jung, T., 2014. Zastosowanie odpadów azbestowych w masach ceramicznych do produkcji ceramiki budowlanej, Materiały Ceramiczne, 66, 3, 245-252.
  • 17. Kusiorowski, R., Zaremba, T., Piotrowski, J., 2015. Wykorzystanie odpadów zawierających azbest do wytwarzania ceramicznych materiałów budowlanych o czerepie spieczonym, Materiały Ceramiczne, 67, 3, 279-285.
  • 18. Kusiorowski, R., Zaremba, T., Piotrowski, J., 2014. The potential use of cement-asbestos waste in the ceramic masses destined for sintered wall clay brick manufacture, Ceramics International, 40, 11995-12002, DOI: 10.1016/j.ceramint.2014.04.037
  • 19. Leonelli, C., Veronesi, P., Boccaccini, D. N., Rivasi, M. R., Barbieri, L., Andreola, F., Lancellotti, I., Rabitti, D., Pellacani G. C., 2006. Microwave Thermal Inertisation of Asbestos Containing Waste and its Recycling in Traditional Ceramics, Journal of Hazardous Materials, 135(1-3), 149-155, DOI: 10.1016/j.jhazmat.2005.11.035
  • 20. Łuniewski, S., Łuniewski A., 2019. Selected legal and financial conditions for the liquidation of asbestos and products containing asbestos illustrated with an example of rural municipalities in the podlaskie voivodeship, Ekonomia i Środowisko, 3(70), 154-166, DOI: 10.34659/2019/3/41
  • 21. Martin, J., Beauparlant, M., Sauvé, S., L’Espérance, G., 2017. Effect of accelerating voltage on beam damage of asbestos fibers in the transmission electron microscope (TEM), Micron 96, 1-8, DOI: 10.1016/j.micron.2017.01.006
  • 22. Obmiński, A., 2021. Asbestos waste recycling using the microwave technique – Benefits and risks, Environmental Nanotechnology, Monitoring & Management, 16, 100577, DOI: 10.1016/j.enmm.2021.100577
  • 23. Pawełczyk, A., Božek, F., Grabas. K., Chęcmanowski, J., 2017. Chemical elimination of the harmful properties of asbestos from military facilities, Waste Management, 61, 377-385, DOI: 10.1016/j.wasman.2016.11.041
  • 24. Pietrzak, A., 2018. Ocena wpływu recyklatów z butelek PET na wybrane właściwości betonu, Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 7, 1, 51- 56, DOI: 10.17512/bozpe.2018.1.07
  • 25. Pietrzak, A., 2019. Wpływ popiołów powstałych ze spalania osadów ściekowych na podstawowe właściwości mechaniczne betonu, Construction of optimized energy potential, 8, 1, 29-35, DOI: 10.17512/bozpe.2019.1.03
  • 26. Pietrzak, A., Ulewicz, M., 2017. Wpływ odpadów ze stłuczki szklanej kineskopowej (CRT) na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 49-50, DOI: 10.15199/33.2017.10.16
  • 27. Pietrzak, A., Ulewicz, M., 2018. Wpływ poużytkowych odpadów wykładzin samochodowych na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 85-86, DOI: 10.15199/33.2018.10.26
  • 28. Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal flyash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), Vol. 9, No 1, 89-96, DOI: 10.17512/bozpe.2020.1.11
  • 29.Ranaivomanana, H., Leklou, N., 2021. Investigation of microstructural and mechanical properties of partially hydrated Asbestos-Free fiber cement waste (AFFC) based concretes: Experimental study and predictive modeling, Construction and Building Materials, 277, DOI: 10.1016/j.conbuildmat.2020.121943
  • 30. Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing, 52(2), 1002−1010, DOI: 10.5277/ppmp160237
  • 31. Ulewicz, M., Liszewski, W., 2020. Influence of public financial support on the process of roof covering replacement and safety of civil structures, System Safety: Human - Technical Facility -Environment, 2, 1, 259-267, DOI: 10.2478/czoto-2020-0032
  • 32. Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872: https://doi.org/10.3390/ma14040872
  • 33. Viani, A., Gualtieri A. F., 2014. Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes, Cement and Concrete Research, 58, 56-66, DOI: 10.1016/j.cemconres.2013.11.016
  • 34. Wójcik, M., 2018. Azbest w odpadach motoryzacyjnych. Współczesne metody recyklingu odpadów azbestowych z sektora motoryzacyjnego, Autobusy, 4, 27-32, DOI: 10.24136/atest.2018.016
  • 35. Yoshikawa, N., Kashimura, K., Hashiguchi, M., Sato, M., Horikoshi, S., Mitani, T., Shinohara N., 2015. Detoxification mechanism of asbestos materials by microwave treatment, Journal of Hazardous Materials, 284, 201-206, DOI: 10.1016/j.jhazmat.2014.09.030
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e9913a4-595a-4606-8585-094e887b00e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.