PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Introducing Au potential areas, using remote sensing and geochemical data processing using fractal methods in Chartagh, western Azerbijan – Iran

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozpoznawanie potencjalnych złóż złota (au) w oparciu o metody zdalnego wykrywania z wykorzystaniem przetwarzania danych geochemicznych przy użyciu fraktali w rejonie Chartagh, na terenie zachodniego Azerbejdżanu i Iranu
Języki publikacji
EN
Abstrakty
EN
The studied area - Chartagh - is located in the East of Azerbaijan gharbi Province, Iran. In this paper, geology map, ASTER satellite images were used and after processing these images with ENVI softwares, geochemical data analysis consisting of lithogeochemical samples, within geological field observations. On ASTER data; using a number of selected methods including band ratio, Minimum Noise Fraction (MNF) and Spectral Angle Maper (SAM) distinguished alternation zones. Geochemical anomalies were separated by number - size (N-S) fractal method. (N-S) fractal method was utilized for High intensive Au, As and Ag anomalies.
PL
Badany obszar – Chrtagh, leży w prowincji Gharbi. we wschodniej części Azerbejdżanu i Iranie. W pracy tej wykorzystano dane geologiczne oraz zdjęcia satelitarne z satelity ASTER, przetworzone przy użyciu oprogramowania ENVI oraz dane geochemiczne: wyniki analiz geochemicznych skał z badanego terenu. Na podstawie danych uzyskanych ze zdjęć satelitarnych wyodrębniono wyraźne strefy przeobrażenia skał, z wykorzystaniem analizy pasm, transformacji MNF (Minimum Noise Factor) oraz z użyciem transformacji SAM (Spectral Angle Mapper). Anomalie geochemiczne wykryte zostały w oparciu o metodę fraktalną N-S (liczba-wymiar), przy pomocy tej metody stwierdzone zostały wysokie poziomy anomalii Ag i Au.
Rocznik
Strony
397--414
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Afzal P., Fadakar Alighalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2010a. Application of power spectrum-area fractal model to separate anomalies from background in Kahang Cu-Mo porphyry deposit, Central Iran. Arch. Min. Sci., Vol. 56, No 3, p. 389-401.
  • [2] Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B., Fadakar Alghalandis Y., 2010b. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J. Geochem. Explor. 104, 34-46.
  • [3] Agterberg F.P., Cheng Q., Wright D.F., 1993. Fractal modeling of mineral deposits. [In:] Elbrond, J., Tang, X. (Eds.), 24th APCOM symposium proceeding, Montreal, Canada, 43-53 p.
  • [4] Agterberg F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 37, 1-8.
  • [5] Agterberg FP., Cheng Q. Brown A., Good D., 1996. Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput. Geosci., 22(5), 497-507.
  • [6] Azizi H., Tarverdi M.A., Akbarpour A., 2010. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, 46, 99-109.
  • [7] Beiranvand Pour A., Hashim M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1-9.
  • [8] Cheng Q., Agterberg F.P., Ballantyne S.B., 1994. The separation of geochemical anomalies from background by fractalmethods. Journal of Geochemical Exploration, 51, 109-130.
  • [9] Cheng Q., 1999. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor., 65(3), 175-194.
  • [10] Cheng Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314-324.
  • [11] Goncalves M.A., Mateus A., Oliveira V., 2001. Geochemical anomaly separation by multifractal modeling. J. Geochem. Explor., 72, 91-114.
  • [12] Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105, 95-105.
  • [13] Gumiel P., Sanderson D.J., Arias M., Roberts S., Martín-Izard A., 2010. Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 38, 307-318.
  • [14] Hawkes R.A.W., Webb H.E., 1979. Geochemistry in mineral exploration, 2nd edn. Academic Press, New York, 657 p.
  • [15] Inzana J., Kusky T., Higgs G., Tucker R., 2003. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37, 59-72.
  • [16] Kujjo C.P., 2010. Application of remote sensing for gold exploration in the Nuba Montains, Sudan. Bowling Green State University, Master of Science Thesis, 99 p.
  • [17] Li C., Xu Y., Jiang X., 1994. The fractal model of mineral deposits. Geology of Zhejiang, 10, 25-32 (In Chinese with English Abstract).
  • [18] Li C., Ma T., Shi J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor., 77, 167-175.
  • [19] Mandelbrot B.B., 1983. The fractal geometry of nature. Freeman, San Fransisco, 1-468 p.
  • [20] Mars J.C., Rowan L.C., 2006. Radiometer (ASTER) data and logical operator algorithms arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Regional mapping of phyllic and argillic altered rocks in the Zagros magmatic. Geosphere, 2, 161-186.
  • [21] Moghtaderi A., Moore F., Mohammadzadeh A., 2007. The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. Journal of Asian Earth Sciences, 30, 238-252.
  • [22] Monecke T., Monecke J., Herzig P.M., Gemmell J.B., Monch W., 2005. Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth and Planetary Science Letters, 232, 363-378.
  • [23] Oskouei M., Busch W., 2012. A selective combined classification algorithm for mapping alterations on ASTER data. Appl. Geomat., 4, 47-54.
  • [24] Poormirzaee R., Mohammady Oskouei M., 2010. Use of spectral analysis for detection of alterations in ETM data, Yazd, Iran. Applied Geomatics, 2, 147-154.
  • [25] Rajendran S., Khirbash S.A., Pracejus B., Nasir S., Al-Abri A.H., Kusky T.M., Ghulam A., 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strateg. Ore Geology Reviews, 44, 121-135.
  • [26] Reimann C., Filzmoser P., Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1-16.
  • [27] Rowan L.C., Mars J.C., 2003. Lithologic mapping in the Mountain Pass. California area using 341.
  • [28] Sadeghi B., Moarefvand P., Afzal P., Yasrebi A.B., Daneshvar Saein L., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration, 122, 9-19.
  • [29] Sanderson D.J., Roberts S., Gumiel P., 1994. A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Econ. Geol., 89, 168-173.
  • [30] Shi J., Wang C., 1998. Fractal analysis of gold deposits in China: implication for giant deposit exploration. Earth Sci. J. China Univ. Geosci., 23, 616-618 (In Chinese with English Abstract).
  • [31] Tukey J.W., 1977. Exploratory Data Analysis. First ed. Pearson, p. 1-688.
  • [32] Turcotte D.L., 1996. Fractals and Chaos in Geophysics, second ed. Cambridge University Press, Cambridge UK, 81-99 p.
  • [33] Turcotte D.L., 1997. Fractals and chaos in geology and geophysics. Cambridge Univ, Press, Cambridge.
  • [34] Turcotte D.L., 2002. Fractals in petrology. Lithos., 65, 261-271.
  • [35] Yetkin E., Toprak V., Suezen M.L., 2004. Alteration Mapping By Remote Sensing: Application To Hasandağ-Melendiz Volcanic, Complex. Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul.
  • [36] Yousefifar S., Khakzad A., Asadi Harooni H., Karami J., Jafari M.R., Vosoughi Abedin M., 2011. Prospection of Au and Cu bearing targets by exploration data combination in southern part of Dalli Cu-Au porphyry deposit, Central Iran. Arch. Min. Sci., Vol. 56, No 1, p. 21-34.
  • [37] Zuo R., Cheng Q., Xia Q., 2009. Application of fractal models to characterization of vertical distribution of geochemical element concentration. J. Geochem. Explor., 102(1), 37-43.
  • [38] Zuo R., 2011. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13-22.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e95d64b-32ed-4b98-9184-cef0b0a4d9c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.