PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of photovoltaics development on electricity grids - possible scenarios on the example of Poland and Germany

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the article is to analyze the reduction of PV generation in Germany and Poland and possible ways to solve it. Design/methodology/approach: The analysis was conducted using available secondary data and literature. The study's time scope is from Q1 2013 to Q1 2024. Findings: The answer to the challenges is the continuous modernization of the power grid towards smart grids. A necessary element is increasing the flexibility of the power system through the development of energy storage and new grid services. Research limitations/implications: Limitations apply to the Polish and German markets. Practical implications: Based on the analysis of the Polish and German markets, the authors proposed possible scenarios for the development of PV networks and possible actions aimed at continuous modernization of the power grid towards smart grids by conducting programs to support the development of national network infrastructure. Social implications: Reducing the negative impact on the environment and identifying opportunities to build smart grids. Originality/value: Few studies have examined the effects of integrating RES into power grids. The research gap detailed the analysis of grid deactivation cases in Poland and Germany. The two markets were compared due to their geographical proximity and their significant differences.
Rocznik
Tom
Strony
349--373
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • SMA Solar Technology AG, Niestetal, Germany
  • Institute of Quality Science, Poznań University of Economics & Business, Poland
  • Institute of Quality Science, Poznań University of Economics & Business, Poland
Bibliografia
  • 1. Adewumi, O.B., Fotis, G., Vita, V., Nankoo, D., Ekonomou, L. (2022). The Impact of Distributed Energy Storage on Distribution and Transmission Networks’ Power Quality. Applied Sciences, 12(13), 6466. https://doi.org/10.3390/app12136466
  • 2. Ahmed, I., Rehan, M., Hong, K.-S., Basit, A. (2022). A Consensus-based Approach for Economic Dispatch considering Multiple Fueling Strategy of Electricity Production Sector over a Smart Grid. 2022 13th Asian Control Conference (ASCC), 1196-1201. https://doi.org/10.23919/ASCC56756.2022.9828267
  • 3. Ahmed, I., Rehan, M., Iqbal, N., Ahn, C.K. (2023). A Novel Event-Triggered Consensus Approach for Generic Linear Multi-Agents Under Heterogeneous Sector-Restricted Input Nonlinearities. IEEE Transactions on Network Science and Engineering, 10(3), 1648-1658. https://doi.org/10.1109/TNSE.2022.3232779
  • 4. Alhammad, H.I., Khan, K.A., Alismail, F., Khalid, M. (2021). Capacity Optimization and Optimal Placement of Battery Energy Storage System for Solar PV Integrated Power Network. 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 847-852. https://doi.org/10.1109/ECCE47101.2021.9595426
  • 5. Alvi, U.-E.-H., Ahmed, W., Rehan, M., Ahmed, S., Ahmad, R., Ahmed, I. (2022). A novel incremental cost consensus approach for distributed economic dispatch over directed communication topologies in a smart grid. Soft Computing, 26(14), 6685-6700. https://doi.org/10.1007/s00500-022-07061-4
  • 6. Andreotti, A., Petrillo, A., Santini, S., Vaccaro, A., Villacci, D. (2019). A Decentralized Architecture Based on Cooperative Dynamic Agents for Online Voltage Regulation in Smart Grids. Energies, 12(7), 1386. https://doi.org/10.3390/en12071386
  • 7. Anjana, K.R., Shaji, R.S. (2018). A review on the features and technologies for energy efficiency of smart grid. International Journal of Energy Research, 42(3), 936-952. https://doi.org/10.1002/er.3852
  • 8. Appunn, K. (2016, January 16). Re-dispatch costs in the German power grid. https://www.Cleanenergywire.Org/Factsheets/Re-Dispatch-Costs-German-Power-Grid.
  • 9. Cheng, Q., Yan, Y., Liu, S., Yang, C., Chaoui, H., Alzayed, M. (2020). Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling. Energies, 13(24), 6489. https://doi.org/10.3390/en13246489
  • 10. Cheung, K., Xing W., But-Chung C., Ying X., Rios-Zalapa, R. (2010). Generation dispatch in a smart grid environment. 2010 Innovative Smart Grid Technologies (ISGT), 1-6. https://doi.org/10.1109/ISGT.2010.5434781
  • 11. Faheem, M., Shah, S.B.H., Butt, R.A., Raza, B., Anwar, M., Ashraf, M.W., Ngadi, M.A., Gungor, V.C. (2018). Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Computer Science Review, 30, 1-30. https://doi.org/10.1016/j.cosrev.2018.08.001
  • 12. German Energy Solutions Initiative (2022, July 20). Grid-forming power converters provide stability for the energy transition. https://www.German-Energy- Solutions.de/GES/Redaktion/EN/News/2022/20220720-Grid-Forming-Power- Converters.html.
  • 13. Hetzer, J., Yu, D.C., Bhattarai, K. (2008). An Economic Dispatch Model Incorporating Wind Power. IEEE Transactions on Energy Conversion, 23(2), 603-611. https://doi.org/10.1109/TEC.2007.914171
  • 14. Hossain, M.S., Madlool, N.A., Rahim, N.A., Selvaraj, J., Pandey, A.K., Khan, A.F. (2016). Role of smart grid in renewable energy: An overview. Renewable and Sustainable Energy Reviews, 60, 1168-1184. https://doi.org/10.1016/j.rser.2015.09.098
  • 15. Howlader, H.O.R., Matayoshi, H., Senjyu, T. (2016). Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. Renewable Energy, 99, 107-117. https://doi.org/10.1016/j.renene.2016.06.050
  • 16. Intersolar (2024, May 28). Grid-forming technology is an important part of the energy transition. https://www.Intersolar.de/News/Interview-Duckwitz-Prabhakaran-Grid- Forming-Technology-Important-Part-Energy-Transition.
  • 17. IRENA (2022). https://www.irena.org/Energy-Transition/Technology/Solar-energy
  • 18. Jamroen, C., Dechanupapritta, S. (2019). Coordinated Control of Battery EnergyStorage System and Plug-in Electric Vehicles for Frequency Regulation in Smart Grid. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 286-291. https://doi.org/10.1109/GTDAsia.2019.8715962
  • 19. José de Castro Vieira, S., Tapia Carpio, L.G. (2020). The economic impact on residential fees associated with the expansion of grid-connected solar photovoltaic generators in Brazil. Renewable Energy, 159, 1084-1098. https://doi.org/10.1016/j.renene.2020.06.016
  • 20. Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302-318. https://doi.org/10.1016/j.rser.2015.12.114
  • 21. Ketter, W., Collins, J., Saar-Tsechansky, M., Marom, O. (2018). Information Systems for a Smart Electricity Grid. ACM Transactions on Management Information Systems, 9(3), 1-22. https://doi.org/10.1145/3230712
  • 22. Keyhani, A., Chatterjee, A. (2012). Automatic Generation Control Structure for Smart Power Grids. IEEE Transactions on Smart Grid, 3(3), 1310-1316. https://doi.org/10.1109/TSG.2012.2194794
  • 23. Khalid, M. (2024a). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299
  • 24. Khalid, M. (2024b). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299
  • 25. Khan, K.A., Quamar, M.M., Al-Qahtani, F.H., Asif, M., Alqahtani, M., Khalid, M. (2023). Smart grid infrastructure and renewable energy deployment: A conceptual review of Saudi Arabia. Energy Strategy Reviews, 50, 101247. https://doi.org/10.1016/j.esr.2023.101247
  • 26. Kyllmann, C. (2023, October 18). Germany wants to ensure more green electricity is “used instead of curtailed”. https://Www.Cleanenergywire.Org/News/Germany-Wants-Ensure- More-Green-Electricity-Used-Instead-Curtailed-Media.
  • 27. Lam, A.Y.S., Leung, K.-C., Li, V.O.K. (2016). Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism. IEEE Transactions on Smart Grid, 7(1), 156-166. https://doi.org/10.1109/TSG.2015.2436901
  • 28. Lee, H., Ban, J., Kim, S.W. (2022). Microgrid Optimal Scheduling Incorporating Remaining Useful Life and Performance Degradation of Distributed Generators. IEEE Access, 10, 39362-39375. https://doi.org/10.1109/ACCESS.2022.3167037
  • 29. Lund, H., Østergaard, P.A., Connolly, D., Mathiesen, B.V. (2017). Smart energy and smart energy systems. Energy, 137, 556-565. https://doi.org/10.1016/j.energy.2017.05.123
  • 30. Maddikunta, P.K.R., Pham, Q.-V.B.P., Deepa, N., Dev, K., Gadekallu, T.R., Ruby, R., Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. https://doi.org/10.1016/j.jii.2021.100257
  • 31. Mahdad, B., Srairi, K. (2015). Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms. Energy Conversion and Management, 98, 411-429. https://doi.org/10.1016/j.enconman.2015.04.005
  • 32. Manditereza, P.T., Bansal, R. (2016). Renewable distributed generation: The hidden challenges - A review from the protection perspective. Renewable and Sustainable Energy Reviews, 58, 1457-1465. https://doi.org/10.1016/j.rser.2015.12.276
  • 33. Ministerstwo Klimatu i Środowiska (2024). Projekt_aKPEiK_2024-02-29.
  • 34. Money.pl (2024, April 29). https:/Zamieszanie-wokol-rekompensat-za-wylaczenia- fotowoltaiki-pse-interweniuje. Https://Www.Money.Pl/Gospodarka/Zamieszanie-Wokol-Rekompensat-Za-Wylaczenia-Fotowoltaiki-Pse-Interweniuje-7020726411672480a.Html.
  • 35. Moslehi, K., Kumar, R. (2010). A Reliability Perspective of the Smart Grid. IEEE Transactions on Smart Grid, 1(1), 57-64. https://doi.org/10.1109/TSG.2010.2046346
  • 36. Naz, A., Javaid, N., Rasheed, M.B., Haseeb, A., Alhussein, M., Aurangzeb, K. (2019). Game Theoretical Energy Management with Storage Capacity Optimization and Photo-Voltaic Cell Generated Power Forecasting in Micro Grid. Sustainability, 11(10), 2763. https://doi.org/10.3390/su11102763
  • 37. Phuangpornpitak, N., Tia, S. (2013). Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System. Energy Procedia, 34, 282-290. https://doi.org/10.1016/j.egypro.2013.06.756
  • 38. Salman, U., Khan, K., Alismail, F., Khalid, M. (2021). Techno-Economic Assessment and Operational Planning of Wind-Battery Distributed Renewable Generation System. Sustainability, 13(12), 6776. https://doi.org/10.3390/su13126776
  • 39. Sarshar, J., Moosapour, S.S., Joorabian, M. (2017). Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting. Energy, 139, 680-693. https://doi.org/10.1016/j.energy.2017.07.138
  • 40. Sgouridis, S., Abdullah, A., Griffiths, S., Saygin, D., Wagner, N., Gielen, D., Reinisch, H., McQueen, D. (2016). RE-mapping the UAE’s energy transition: An economy-wide assessment of renewable energy options and their policy implications. Renewable and Sustainable Energy Reviews, 55, 1166-1180. https://doi.org/10.1016/j.rser.2015.05.039
  • 41. SMA Solar AG (2020). Sieć autonomiczna dla regionu Bordesholm: zasilanie elektryczne także w razie awarii sieci. Https://Www.Sma-Solar.Pl/Large-Scale-Energy-Solution/Siec- Autonomiczna-Regionu-Bordesholm.
  • 42. Solar Power Europe (2023). EU Market Outlook for Solar Power.
  • 43. SolarPower Europe (2024). European Market Outlook for Battery Storage. SolarPower Europe. www.solarpowereurope.org
  • 44. Vaccaro, A., Velotto, G., Zobaa, A.F. (2011). A Decentralized and Cooperative Architecture for Optimal Voltage Regulation in Smart Grids. IEEE Transactions on Industrial Electronics, 58(10), 4593-4602. https://doi.org/10.1109/TIE.2011.2143374
  • 45. Vita, V., Ekonomou, L., Christodoulou, C.A. (2016). The impact of distributed generation to the lightning protection of modern distribution lines. Energy Systems, 7(2), 357-364. https://doi.org/10.1007/s12667-015-0175-3
  • 46. Wehrmann, B. (2024, April 9). Curtailing of renewable power increases in Germany in 2023 as re-dispatch costs recede. Https://Www.Cleanenergywire.Org/News/Curtailing-Renewable-Power-Increases-Germany-2023-Re-Dispatch-Costs-Recede.
  • 47. Wysokienapiecie.pl (2023, April 23). PSE-oglosily-zagrozenie-bezpieczenstwa-przez-nadmiar-mocy-co-to-oznacza/. Https://Wysokienapiecie.Pl/86062-Pse-Oglosily- Zagrozenie-Bezpieczenstwa-Przez-Nadmiar-Mocy-Co-to-Oznacza/.
  • 48. Zafeiropoulou, M., Mentis, I., Sijakovic, N., Terzic, A., Fotis, G., Maris, T.I., Vita, V., Zoulias, E., Ristic, V., Ekonomou, L. (2022). Forecasting Transmission and Distribution System Flexibility Needs for Severe Weather Condition Resilience and Outage Management. Applied Sciences, 12(14), 7334. https://doi.org/10.3390/app12147334
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e8c631d-885b-483e-8296-b062dee3a8f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.