Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, authors investigated the effect of the Depth of Field (DoF) reduction, arising when the acquisition of small objects is carried out with a photogrammetry-based system using a Digital Single Lens Reflex (DSLR) camera and the structure from motion (SfM) algorithm. This kind of measuring instrument is very promising for industrial metrology according to the paradigms of the fourth industrial revolution. However, when increasing the magnification level, necessary for the reconstruction of sub-millimetric features, there is a corresponding decrease of the DoF, leading to possible effects on the reconstruction accuracy. Thus, the effect of the DoF reduction was analysed through the reconstruction of a well-known artefact: the step gauge. The analysis was conducted considering the theory behind the DoF concept, the analysis of the 2D images, input of photogrammetric reconstruction and, finally, the results in terms of dimensional verification of the reconstructed step gauge.
Czasopismo
Rocznik
Tom
Strony
323--342
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Twórcy
autor
- Politecnico di Bari, Department of Mechanics, Mathematics and Management, via E. Orabona 4, 70126 Bari, Italy
autor
- Politecnico di Bari, Department of Mechanics, Mathematics and Management, via E. Orabona 4, 70126 Bari, Italy
autor
- Politecnico di Bari, Department of Mechanics, Mathematics and Management, via E. Orabona 4, 70126 Bari, Italy
autor
- Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet 425, DK-2800 Kgs. Lyngby, Denmark
Bibliografia
- [1] Maté-González, M. Á., Aramendi, J., Yravedra, J., Blasco, R., Rosell, J., González-Aguilera, D., & DomÍnguez-Rodrigo, M. (2017). Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro-photogrammetry. Journal of Microscopy, 267(2), 356-370. https://doi.org/10.1111/jmi.12575
- [2] Toschi, I., Capra, A., Luca, L. De, Angelo Beraldin, J., & Cournoyer, L. (2014). On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 371-378. https://doi.org/10.5194/isprsannals-II-5-371-2014
- [3] Sapirstein, P. (2018). A high-precision photogrammetric recording system for small artifacts. Journal of Cultural Heritage, 31, 33-45. https://doi.org/10.1016/j.culher.2017.10.011
- [4] Galantucci, L. M., Guerra, M. G., & Lavecchia, F. (2018). Photogrammetry Applied to Small and Micro Scaled Objects: A Review. Lecture Notes in Mechanical Engineering, 0(9783319895628), 57-77. https://doi.org/10.1007/978-3-319-89563-5_4
- [5] Leach, R., Sims-Waterhouse, D., Medeossi, F., Savio, E., Carmignato, S., & Su, R. (2018). Fusion of photogrammetry and coherence scanning interferometry data for all-optical coordinate measurement. CIRP Annals, 67(1), 599-602. https://doi.org/10.1016/j.cirp.2018.04.043
- [6] Percoco, G., Guerra, M. G., Sanchez-Salmeron, A.-J., & Galantucci, L. M. (2017). Experimental investigation on camera calibration for 3D photogrammetric scanning of micro-features for micrometric resolution. International Journal of Advanced Manufacturing Technology, 91(9-12), 2935-2947.
- [7] Sims-Waterhouse, D., Piano, S., & Leach, R. (2017). Verification of micro-scale photogrammetry for smooth three-dimensional object measurement. Measurement Science and Technology, 28(5). https://doi.org/10.1088/1361-6501/aa6364
- [8] Dai, G., Neugebauer, M., Stein, M., Bütefisch, S., & Neuschaefer-Rube, U. (2016). Overview of 3D Micro- and Nanocoordinate Metrology at PTB. Applied Sciences, 6(9), 257. https://doi.org/10.3390/app6090257
- [9] Beraldin, J. A., Mackinnon, D., & Cournoyer, L. (2015). Metrological characterization of 3D imaging systems: progress report on standards developments. International Congress of Metrology, 3, 1-21. https://doi.org/10.1051/metrology/20150013003
- [10] Gallo, A., Muzzupappa, M., & Bruno, F. (2014). 3D reconstruction of small sized objects from a sequence of multi-focused images. Journal of Cultural Heritage, 15(1), 173-182. https://doi.org/10.1016/j.culher.2013.04.009
- [11] Nicolae, C., Nocerino, E., Menna, F., & Remondino, F. (2014). Photogrammetry applied to problematic artefacts. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5(June), 451-456. https://doi.org/10.5194/isprsarchives-XL-5-451-2014
- [12] Kuthirummal, S., Nagahara, H., Zhou, C., & Nayar, S. K. (2011). Flexible depth of field photography. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), 58-71. https://doi.org/10.1109/TPAMI.2010.66
- [13] Galantucci, L. M., Lavecchia, F., & Percoco, G. (2013). Multistack Close Range Photogrammetry for Low Cost Submillimeter Metrology. Journal of Computing and Information Science in Engineering, 13(4), 044501. https://doi.org/10.1115/1.4024973
- [14] Santella, M., & Milner, A. R. C. (2017). Coupling Focus Stacking with Photogrammetry to Illustrate Small Fossil Teeth. Journal of Paleontological Techniques, 18(18), 1-17.
- [15] Ströbel, B., Schmelzle, S., Blüthgen, N., & Heethoff, M. (2018). An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. ZooKeys, 2018(759), 1-27. https://doi.org/10.3897/zookeys.759.24584
- [16] Nocerino, E., Menna, F., Remondino, F., Beraldin, J. A., Cournoyer, L., & Reain, G. (2016). Experiments on calibrating tilt-shift lenses for close-range photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41, 99-105. https://doi.org/10.5194/isprsarchives-XLI-B5-99-2016
- [17] De Chiffre, L., Carmignato, S., Cantatore, A., & Jensen, J. D. (2009). Replica calibration artefacts for optical 3D scanning of micro parts. In 9th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN, Spain, 352-355.
- [18] Guerra, M. G., Gregersen, S. S., Frisvad, J. R., De Chiffre, L., Lavecchia, F., & Galantucci, L. M. (2020). Measurement of polymers with 3D optical scanners: evaluation of the subsurface scattering effect through five miniature step gauges. Measurement Science and Technology, 31(1), 015010. https://doi.org/10.1088/1361-6501/ab3edb
- [19] Guerra, M. G., De Chiffre, L., Lavecchia, F., & Galantucci, L. M. (2020). Use of miniature step gauges to assess the performance of 3D optical scanners and to evaluate the accuracy of a novel additive manufacture process. Sensors (Switzerland), 20(2). https://doi.org/10.3390/s20030738
- [20] Guerra, M. G., Lavecchia, F., & Galantucci, L. M. (2020). Artefacts Used for Testing 3D Optical-Based Scanners. In Lecture Notes in Mechanical Engineering (pp. 173-189). https://doi.org/10.1007/978-3-030-46212-3_12
- [21] Cantatore, A., Angel, J., & De Chiffre, L. (2012). Material investigation for manufacturing of reference step gauges for CT scanning verification. In 12th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN, Sweden, 129-132.
- [22] Galantucci, L. M., Pesce, M., & Lavecchia, F. (2015). A stereo photogrammetry scanning methodology, for precise and accurate 3D digitization of small parts with sub-millimeter sized features. CIRP Annals - Manufacturing Technology, 64(1), 507-510. https://doi.org/10.1016/j.cirp.2015.04.016
- [23] Sims-Waterhouse, D., Isa, M., Piano, S., & Leach, R. (2020). Uncertainty model for a traceable stereo-photogrammetry system. Precision Engineering, 63(September 2019), 1-9. https://doi.org/10.1016/j.precisioneng.2019.12.008
- [24] Allen, E., & Triantaphillidou, S. (2011). The Manual of Photography - “Photographic and geometrical optics”. Taylor & Francis.
- [25] Thomson, G. H. (2010). The practical effect of a diffraction-limited image for photogrammetry. Photogrammetric Record, 25(130), 197-200. https://doi.org/10.1111/j.1477-9730.2010.00580.x
- [26] Olkowicz, M., Dabrowski, M., & Pluymakers, A. (2019). Focus stacking photogrammetry for microscale roughness reconstruction: a methodological study. Photogrammetric Record, 34(165), 11-35. https://doi.org/10.1111/phor.12270
- [27] Lavecchia, F., Guerra, M. G., & Galantucci, L. M. (2018). Performance verification of a photogrammetric scanning system for micro-parts using a three-dimensional artifact: adjustment and calibration. International Journal of Advanced Manufacturing Technology, 96(9-12), 4267-4279. https://doi.org/10.1007/s00170-018-1806-3
- [28] Percoco, G., Modica, F., & Fanelli, S. (2016). Image analysis for 3D micro-features: A new hybrid measurement method. Precision Engineering. https://doi.org/10.1016/j.precisioneng.2016.11.012
- [29] Koik, B. T., & Ibrahim, H. (2014). A literature survey on blur detection algorithms for digital imaging. Proceedings - 1st International Conference on Artificial Intelligence, Modelling and Simulation, AIMS 2013, 272-277. https://doi.org/10.1109/AIMS.2013.50
- [30] Ahn, S. J., Rauh, W., & Recknagel, M. (1999). Geometric Fitting of Line, Plane, Circle, Sphere, and Ellipse. ABW-Workshop 6, Technische Akademie Esslingen, Germany.
Uwagi
1. This work was supported by the Italian Ministry of Education, University and Research under the Programme “Department of Excellence” Legge 232/2016 (Grant No. CUP - D94I18000260001).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e89beca-2a63-44e1-9a4a-26a808ccd2d0