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1. Introduction

In geodetic practice there is often a need to transform from Cartesian to geodetic
coordinates. Position of a point in Cartesian system may easily be expressed by
geodetic coordinates as follows:

x:(N+h)C05(pcos7» (1a)
y= (N+h)c05(psin7» (1b)
[N(l e )+h]sin<p (1c)
where:
¢ — geodetic latitude,
A — longitude,
h - ellipsoidal height,
a
N =—===== - radius of curvature in the prime vertical,
J1-¢*sin® ¢
a-b
2 > — first eccentricity squared,
T g — length of the semimajor axis of an ellipsoid,
b - length of the semiminor axis of an ellipsoid.

The inverse transform poses a more serious problem because of the necessity of
solving a nonlinear equation. This task has been undertaken for the last decades and has
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resulted in methods which may be classified into two groups: exact methods and itera-
tive methods. The exact methods are usually based on the solution of a quartic equation
with respect to an auxiliary variable leading to the solution e.g. [1, 7, 18]. The iterative
methods rely on applying certain functions which iterate a solution with any accuracy
e.g. [8, 13]. Among the iterative methods there are rapidly convergent ones that achieve
satisfying accuracy after only one iteration [2, 4]. Both approaches have their virtues
and drawbacks. Quartic equations lead to the exact solution in a finite number of steps
[9, 17]; allow for the solvability analysis [5] but engage many time consuming mathemat-
ical operations (square roots, trigonometric functions, hyperbolic functions). Iterative
methods may be constructed in such a way to avoid time consuming mathematical
operations but on the other hand they require many numerical tests confirming their
convergence to the correct solution. Currently in the literature one can see the domi-
nance of iterative solutions and one of them by Fukushima [4] is considered optimal.

2. “Latitude Equation” and Its Solutions

One possible solution to the problem of transformation is the use of “latitude
equation” (e.g. Fukushima in [4]). Although the equation may be represented in
any parameterization (geodetic, geocentric or parametric latitude) [12] in this study
only parametric latitude will be used due to the analytical simplicity of the resulting
equation. “Latitude equation” in this form may be written as:

(@ = b*) siny cosy —pasiny + zbcosy =0 (2)
where:
y — parametric (reduced) latitude,
p=yx+y’ .

The solution to the above equation with respect to the parametric latitude y
gives the opportunity of finding unknown geodetic coordinates (¢, /1) on the basis of
the following formulas:

p= arctan{ tany J

V1-¢?
b pV1-e® cosy +zsiny —b
\/l—e2 cos” y

®)

It is easy to notice that equation (2) and the final formulas for conversion be-
tween Cartesian and geodetic coordinates (3) are loaded with a considerable amount
of trigonometric functions. In problems where the time of execution of the whole
numerical procedure is important the use of them is avoided due to the relatively
long time of processing by computing machines.
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In order to limit their use in the coordinates transformation formulas Fukushima
[3, 4] uses the substitution:

siny = 4)

1 t,
t, =tany, cosy = ——, —_—
v 2 2
1+t 1+t
v v
In this way “latitude equation” as a function of a tangent of the parametric lati-

tude in an irrational form is obtained:

2t, b
f(tw):%—gtw+a—f:0 ®)
vV v

The first and the second derivative of the function (5) necessary in iterative for-
mulas of the third order convergence being the subject of this study are as follows:

£(t)=——=-% ©
th +1
—3¢?

F(t) = )

1/t\i+15

The initial value of the iterative process has been adopted as a tangent of the
parametric latitude for the zero geodetic (ellipsoidal) height i.e.:

o8z z

The final values of the geodetic latitude and height in this case are expressed as
a (modification of the formula (3)):

8)

t
(p:arctan( Y J
V1-¢?
9
pN1-¢® +zt, —b 1+t ©)
h: v v

2 2
1/1—e +tw

By simple manipulations the irrational equation (5) may be presented as a quar-
tic equation of the form:

F(t,)=t, 2Kt +(1+K* = I*)t,> =2Kt, +K* =0 (10)
and the first and second derivative take the following form:

f(t,)=4t, —6Kt,> +2(1+ K>~ )¢t, -2K (11)
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and:
(¢, )=12t,2 ~12Kt, +2(1+ K* - ?) (12)
where:
bi_zzz 1-¢* 2 :e“az.
ap p P’

According to Abel-Ruffini’s theorem quartic equations are the last which can be
solved through radicals. Despite this, iterative approach is more often applied due
to the complexity of achieving the solution in a strict approach (complex solutions,
trigonometric and hyperbolic functions, intermediate solution of the cubic equation
etc.). Applying Euler—Weierstrass substitution (often used in integral calculus) to the
initial latitude equation (2), i.e.:

T:tan%\y, cosw:%, sinw:% (13)
one obtains a quartic equation in a simple form:
f(T)=T*+2ET° +2FT-1=0 (14)
and the first and second derivative read:
f'(T)=4T° +6ET* +2F (15)
f"(T)=12T* +12ET (16)

where:
(”2 -b? +“P) P ap+b*> —a*

bz T bz '

Initial value of the iterative process has been adopted as a tangent of half of the
parametric latitude for the zero geodetic height i.e.:

a z
N T a7

The final values of the geodetic latitude and height in this case are expressed as:

E=

0

2T
Vi-¢* (1-77)
. pN1=¢* (1-T?)+22T—b(1+T7)

\/(1+T2)2—e2(1—T2)2

¢ = arctan

(18)




A Comparison of Iterative Methods of the Cubic Rate Convergence in the Problem... 19

Applying “inverted” with respect to (13) substitution (replacement in the sine
and cosine functions) to the equation (2) one obtains:

Ty . 1-T? 2T
T=tan| ——— |, siny =———, cosy =——— 19
(4 2} Ve Vo 19

From this substitution the following quartic equation is obtained:
f(T)=T*+2GT*+2HT-1=0 (20)
And simple expressions for the first and second derivative take the form:
f(T)=4T° +6GT* +2H (1)
f'(T)=12T* +12GT (22)
where:

el )

- ,H:[zb+(a2—b2)]
ap ap

The initial value for the iterative process (for i = 0) reads:

py1-e¢? +\/(l—e2)pz+z2 -z

) pN1-¢’ +\/(1—ez)p2 +2° +z

The final values of the geodetic latitude and height in this case are as follows:

¢ =arctan| —————-
241-¢e*T
h_Zp 1= T+2z(1-T7)-b(1+T?)

) \/(1+T2 )2 —40°T?

TO

(23)

Some remarks

Irrational equation (5) differs somewhat from the original equation presented
by Fukushima [4]. Fukushima introduces the absolute value of the z Cartesian coor-
dinate to the equation. Due to the symmetry of the ellipsoid of revolution, its section
with a plane containing the z axis (polar) is always an identical meridian ellipse
thus Fukushima solves the problem within the interval of latitudes (0-90°). The ap-
propriate sign of the latitude is restored in relation to the sign of the z Cartesian
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coordinate. Equation (20) is nothing but famous Borkowski’s equation — one of the
first quartic equations in the geodetic literature concerning the problem of conver-
sion. Borkowski [1] solves this equation in a strict way using Ferrari’s method. The
derivation of Borkowski’s equation presented here differs slightly from the original.
Borkowski [1] begins with “latitude equation” in the geodetic latitude parameteriza-
tion and uses the substitution:

a (1 -+ )

2bt

tang = (25)

In this study it is visible that starting with “latitude equation” in the para-
metric latitude parameterization simplifies the derivation of computational for-
mulas considerably. Equation (14) has a singularity for z = 0 (equator), equation
(20) has a singularity for p =0, both cases are easy to eliminate with a simple “if”
statement. While in the geodetic literature it is a common belief that the strict so-
lution to the problem of transformation by solving quartic equation reaches the
70’s of the last century, in the work dedicated to conic sections by Sommerville
([15], first published in 1924) one can find the “latitude equation” in the param-
eterization of the reduced latitude together with the substitution (13) giving
a quartic equation.

3. Cubic Rate Convergence Iterative Methods
for Solving Nonlinear Equations

In order to solve the latitude equation transformed to the irrational form (5) and
polynomial form (10) and (14) five iterative methods of the cubic rate convergence
have been used. The four among them belong to the so called Tschebyscheff-Halley
family of iterative methods and these are: Halley’s, super-Halley’s, Tschebyscheff’s
and Cauchy’s methods. In addition, a method dedicated to solving polynomial
equations — Laguerre’s method has been used. Below there are listed iterative for-
mulas for each method:

— Halley’s method:

(26)

- super-Halley’s method:

1 f(ti) f(ti)f’(ti)

Ly =t——

2 P )T -f0) ()

(27)
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— Tschebyscheff’'s method:
o=t | 1020 "(t;) /) (28)
2[ ()] )£ ()
— Cauchy’s method:
=k = 40, (29)
L [ )
[r(e)]
— Laguerre’s method:
ot - 30)

H(t) = (n=0){(n=1)[ £ (1) = (1) (1) @
where:

fd ) FrC)

iteration’s number,

function resulting from an appropriate equation, its first
and second derivative,

n — polynomial’s degree.

The sign in the denominator of (30) is chosen to give the larger absolute value.
Derivations of the methods as well as their convergence criteria interested read-
er may find in e.g. [6, 10, 11, 16, 17].

4. Tests and Results

Tests of the five iterative methods for the three representations of “latitude
equation” (5), (10) and (14) were conducted for two height intervals and 0-90°(step
of 0.05°) interval of the geodetic latitude (quadrant of a meridian ellipse, z > 0). The
first height interval (case A) covered ellipsoidal heights from —10 km to 10 km with
a step of 50 m and the second one (case B) covered heights from 10 km to 36 000 km
(altitude of geostationary satellites) with a step of 25 km. All the algorithms have
been coded in Borland Delphi environment. Source codes are available from the au-
thors upon request. All constant expressions (e.g. ¥1-¢?, ¢*a”) have been declared
once at the beginning of a driver program and had no impact on the execution time
of any numerical procedure. Parameters of the reference ellipsoid GRS80 were ad-
opted from [14]. In case of polynomial representation Horner’s scheme was used in
order to minimize multiplication operations form n(n + 1)/2 (classical representation)
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to n (where n stands for polynomial’s degree). In the first step the driver program
generated Cartesian coordinates (x, i, z) on the basis of theoretical geodetic coordi-
nates (¢, A, h). In the second step Cartesian coordinates were converted into geodetic
ones and compared with their theoretical values from the first step. In order to ass-
es a transformation error of each method quantities E_h and E_¢ were introduced.
They are the maximum differences in absolute value between theoretical values and
those recomputed. Besides the transformation errors the time of execution of each
numerical procedure was measured and finally standardized to the time of execu-
tion of numerical procedure solving the irrational equation with Halley’s method.
Results for the two cases (A and B) are listed in Tables 1-3. For the case A (from —10
km to 10 km) the number of iterations was limited to one for each method, for the
case B maximum of four iterations was performed depending on the accuracy of the
backward transformation. Errors for the ellipsoidal height less than 10 mm were
omitted as well as errors for the geodetic latitude less than 10~ arcsecond (").

Table 1. Standardized times (ST) of execution of numerical procedures, maximum error for
ellipsoidal height (E_k) [mm], maximum error for geodetic latitude (E_¢) ["]

Case A — one iteration
Equation (5) Equation (10) Equation (14)

Method ST E_h E ¢ oT E_h E_¢ ST E_h E ¢

[mm] [ [mm] | [] [mm] | []
Halley’s method 1.00 - - 1.02 - - 1.06 - -
Super-Halley’s method 0.99 - - 1.00 - - 1.09 - -
Tschebyscheff’s method 1.03 - - 1.02 - - 1.15 - -
Cauchy’s method 1.17 - - 1.15 - - 1.17 - -
Laguerre’s method N/A N/A N/A 1.07 - - 1.17 - -

*N/A —not applicable

Table 2. Standardized times (ST) of execution of numerical procedures, maximum error for
ellipsoidal height (E_h) [mm], maximum error for geodetic latitude (E_o) [“]

Case B — one iteration
Equation (5) Equation (10) Equation (14)
Method ST E h E @ ST E_h E ¢ ST E_h E ¢
[mm] | [] [mm] | [ [mm] | T[]
Halley’s method 1.00 - - 1.02 | 9958 141 1.05 - 0.0008
Super-Halley’s method 0.99 - - 0.99 | 3858 88 1.09 - 0.002
Tschebyscheff’s method 1.03 - - 1.02 | 14141 | 169 | 1.15 - 0.003
Cauchy’s method 1.17 - - 1.14 111 15 1.17 - 0.002
Laguerre’s method N/A | N/JA | N/A | 1.07 | 4956 | 100 | 1.17 - 0.001

*N/A —not applicable
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Table 3. Standardized times (ST) of execution of numerical procedures, maximum error for
ellipsoidal height (E_k) [mm], maximum error for geodetic latitude (E_¢) ["]

Case B - two iterations
Equation (5) Equation (10) Equation (14)

Method 57 E_h Eo | o E_h E_¢ op | Eh Ep

[mm] [ [mm] ["] (mm] | []
Halley’s method 1.00 - - 0.95 109 15 0.99 - -
Super-Halley’s method | 1.03 - - 0.98 1 2 1.03 - -
Tschebyscheff’'s method | 1.09 - - 1.02 372 27 1.06 - -
Cauchy’s method 1.22 - - 1.19 - 0.0005 | 1.23 - -
Laguerre’s method N/A N/A N/A 1.11 7 4 1.15 - -

*N/A - not applicable

Results presented in Table 1 reveal that for the case A (from —10 km to 10 km)
all representations of “latitude equation” as well as all applied methods assure
errors of less than 102 mm for the ellipsoidal height and less than 10~" for the geo-
detic latitude after only one iteration. For the first three iterative methods stan-
dardized timings are comparable. The exception is the equation (14) solved by
Tschebyscheft’s method where a significant difference is visible. Significant differ-
ences in timings are also visible for the three equations solved by Cauchy’s method
and for two polynomial representations with the use of Laguerre’s method. In the
case of the last two mentioned longer time of execution is caused by an additional
square root operation included in the iteration functions. Results contained in
Table 2 (one iteration) and Table 3 (two iterations) concern the case B (from 10 km
to 36 000 km). From Table 2 one notices immediately that the irrational represen-
tation of the “latitude equation” assures high accuracy of the transformation after
only one iteration independent of the numerical method of solving. Also polyno-
mial form (14) gives quite accurate results after one iteration, for the ellipsoidal
height satisfactory and for the geodetic latitude on the level of +3-107". The sec-
ond iteration, in this case, assures more than satisfactory results. Polynomial rep-
resentation (10) requires 3—4 iterations to reach assumed level of accuracy in the
coordinates” conversion. As seen, the most universal (range of heights and time of
execution) is the irrational form of the “latitude equation” solved by Halley’s, su-
per-Halley’s and Tschebyscheff’s methods. Differences in timings for these three
methods are so slight that they could be influenced by the unequal work of CPU
and other processes running in the background while performing the test. These
results support the intuition and experience of Fukushima in the selection of this
particular representation of “latitude equation” and Halley’s method to solve the
problem of transformation from Cartesian coordinates to geodetic ones.
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5. Conclusions

A comparison of efficiency of five iterative methods (Halley, super-Halley,
Tschebyscheff, Cauchy and Laguerre) with a cubic rate convergence has been pre-
sented. The iterative methods have been applied to the problem of conversion be-
tween Cartesian and geodetic coordinates. The mentioned methods have been ap-
plied to the solution of the “latitude equation” in three different representations
— one of them is an irrational form and the others are in a polynomial form. Among
the tested numerical methods of solving nonlinear equations three methods; name-
ly: Halley’s, super-Halley’s and Tschebyscheff’s methods behaved visibly better
than the other two. Also, among three representations of the “latitude equation” the
irrational form assures high accuracy of the transformation with the lowest compu-
tational cost in comparison to the remaining two representations. The polynomial
representation in the form of (14) is slower by several percents but almost equally
accurate. The polynomial representation in the form of (10) could compete with the
abovementioned only for the small range of ellipsoidal heights because it loses accu-
racy considerably with increasing heights thus it lacks signs of universality. In con-
clusion, it must be noted that the results obtained in this study cannot be regarded
as certain in any case because they are dependent on the programming environment
and the computing platform on which numerical tests are performed.
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