PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact evaluation of piston rings mobility on a gas passage in an internal combustion engine (ICE)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To estimate the effect of the axial movement of piston rings in the piston grooves on the blow-by in the internal combustion engine (ICE) by an experiment- calculated method. This contributes to the development of practical recommendations for the further improvement of the engine ring seal designs. Abstract theorems were used when modelling the effect of the axial movement of piston rings in the piston grooves on the blow-by in an ICE. They are based on the fundamental theory of heat engines, thermodynamics and hydraulics. The ICE running was analysed using design-theoretical research methods. The effect of the axial movement of piston rings in the piston grooves on the blow-by in the ICE was established. This creates prerequisites for a more accurate assessment of their sealing capacity and for ways to further improve them. Calculated dependences for computing the blow-by depending on the positional relationship of the rings in the piston grooves were obtained. The dependences of gas escapes on the engine crankshaft speed were obtained, which is especially important for idling modes by which one can judge the dynamic stability of the ring seal and solve the problems of improving its service properties. The calculated dependences for evaluation of the blow-by depending on the positional relationship of the rings in the piston grooves and their respective possible gas flows in the ring seal were obtained for the first time. The practical method for estimating the dynamic stability of the ring seal by decencies of gas escape on the crankshaft rotation speed in ICE was proposed.
Rocznik
Tom
Strony
187--201
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine
autor
  • Faculty of Mechanics, Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevsky Street, 49600, Dnipro, Ukraine
autor
  • Department of Food and Supplies, Military Academy (Odesa), 10 Fontanska doroga, Odesa, 65009, Ukraine
  • Department of Automotive Technology, Military Academy (Odesa), 10 Fontanska doroga, Odesa, 65009, Ukraine
Bibliografia
  • 1. Abramchuk F., O. Grytsyuk, A. Prokhorenko, I. Reveliuk. 2018. “Specifying the procedure for designing the elements of the crankshaft system for a small high-speed diesel engine”. Eastern-European Journal of Enterprise Technologies 3/1(93): 60-66. DOI: 10.15587/1729-4061.2018.133353.
  • 2. Akimov O.G., V.I. Gusau, A.P. Marchenko. 2015. “Обзор компьютерно-интегрированных систем и технологий изготовления поршней двигателей внутреннего сгорания”. Восточно-Европейский журнал передовых технологий. [In Russia: “Overview of computer-integrated systems and technologies for manufacturing pistons of internal combustion engines”. East European Journal of Advanced Technologies 6/1(78): 35-42. DOI: 10.15587/1729-4061.2015.56318. ISSN 1729-3774].
  • 3. Czech P. 2012. “Determination of the course of pressure in an internal combustion engine cylinder with the use of vibration effects and radial basis function - preliminary research”. TELEMATICS IN THE TRANSPORT ENVIRONMENT. Edited by: Mikulski J. Book Series: Communications in Computer and Information Science. Vol.: 329. P. 175-182. Conference: 12th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, Oct 10-13, 2012.
  • 4. Czech P. 2011. “Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. MODERN TRANSPORT TELEMATICS. Edited by: Mikulski J. Book Series: Communications in Computer and Information Science. Vol.: 239. P. 110-117. Conference: 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, Oct 19-22, 2011.
  • 5. Figlus T., M. Stanczyk. 2016. “A method for detecting damage to rolling bearings in toothed gears of processing lines”. Metalurgija 55(1): 75-78. ISSN: 0543-5846.
  • 6. Figlus T., M. Stanczyk. 2014. “Diagnosis of the wear of gears in the gearbox using the wavelet packet transform”. Metalurgija 53(4): 673-676. ISSN: 0543-5846.
  • 7. Homišin J. 2016. “Characteristics of pneumatic tuners of torsional oscillation as a result of patent activity”. Acta Mechanica et Automatika 10(4): 316-323. ISSN 1898-4088.
  • 8. Homišin J., R. Grega, P. Kaššay, G. Fedorko, V. Molnár. 2019. “Removal of systematic failure of belt conveyor drive by reducing vibrations”. Engineering Failure Analysis 99: 192-202. ISSN 1350-6307.
  • 9. Iwnicki S. (editor). 2006. Handbook of Vehicle Dynamics. (Powertrain and Transport). London, New York: Taylor & Francis Group. LLC.
  • 10. Kuľka J., M. Mantič, M. Kopas, E. Faltinová. 2017. ”Necessity of wire rope replacement in crane lifting equipment after change of crane operational parameters”. Advances in Science and Technology Research Journal 11: 226-230. DOI: 10.12913/22998624/71180. ISSN 2299-8624.
  • 11. Lyubarskyy P., D. Bartel. 2016. “2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction”. Tribology International 104: 352-368. DOI: https://doi.org/10.1016/j.triboint.2016.09.017.
  • 12. Ma W., N. Biboulet, A.A. Lubrecht. 2018. “Performance evolution of a worn piston ring”. Tribology International 126: 317-323. https://doi.org/10.1016/j.triboint.2018.05.028.
  • 13. Mohamed E.S. 2018. “Performance analysis and condition monitoring of ICE piston-ring based on combustion and thermal characteristics”. Applied Thermal Engineering 132: 824-840. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.111.
  • 14. Notay R.S., M. Priest, M.F. Fox. 2019. “The influence of lubricant degradation on measured piston ring film thickness in a fired gasoline reciprocating engine”. Tribology International 129: 112-123. DOI: https://doi.org/10.1016/j.triboint.2018.07.002.
  • 15. Postrzednik S., Z. Żmudka, G. Przybyła. 2013. “Influence of the exhaust gas recirculation on the oxygen contents and its excess ratio in the engine combustion chamber”. Journal of KONES. Powertrain and Transport 20 (3): 315-321.
  • 16. Sapietova A., V. Dekys. 2016. „Use od Msc. Adams software product in modeling vibration sources”. Komunikacie 1a(101): 101-107. ISSN: 2585-7878.
  • 17. Shen C., M.M. Khonsari. 2016. “The effect of laser machined pockets on the lubrication of piston ring prototypes”. Tribology International 101: 273-283. DOI: https://doi.org/10.1016/j.triboint.2016.04.009.
  • 18. Smutny J., V. Nohal, D. Vukusicova, H. Seelmann. 2018. “Vibration analysis by the Wigner-Ville transformation method”. Komunikacie 4. ISSN: 1335-4205.
  • 19. Söderfjäll M., A. Almqvist, R. Larsson. 2016. “Component test for simulation of piston ring – cylinder liner friction at realistic speeds”. Tribology International 104: 57-63. DOI: https://doi.org/10.1016/j.triboint.2016.08.021.
  • 20. Tomazic D. 2005. Emissions control. Engine Technology International (ETI) 01.
  • 21. Usman A., C.W. Park. 2016. “Optimizing the tribological performance of textured piston ring–liner contact for reduced frictional losses in SI engine: warm operating conditions”. Tribology International 99: 224-236. DOI: https://doi.org/10.1016/j.triboint.2016.03.030.
  • 22. Wong V.W., Simon C. Tung. 2016. “Overview of automotive engine friction and reduction trends–effects of surface, material, and lubricant-additive technologies”. Friction 4 (1): 1-28.
  • 23. Zapoměl J., V. Dekýš, P. Ferfecki, A. Sapietová, M. Sága, M. Žmindák. 2015. „Identification of material damping of a carbon composite bar and study of its effect on attenuation of its transient lateral vibrations”. Journal of Applied Mechanics 7(6). DOI: https://doi.org/10.1142/S1758825115500817.
  • 24. Žuľová L., R. Grega, J. Krajňák, G. Fedorko, V. Molnár. 2017. “Optimization of noisiness of mechanical system by using a pneumatic tuner during a failure of piston machine”. Engineering Failure Analysis 79: 845-851. ISSN 1350-6307.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e858302-2f89-4b13-91cb-b54739256056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.