PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New methods of natural gas adjusting for technological purposes based on modern filtration materials

Identyfikatory
Warianty tytułu
PL
Nowe metody przygotowania gazu złożowego do celów technologicznych z użyciem nowoczesnych materiałów filtracyjnych
Języki publikacji
EN
Abstrakty
EN
Reservoir gas treatment technologies currently in use require significant investments in equipment and materials. Considering the foregoing, new technologies are sought for treatment and separation of components of extracted gas. They will guarantee compliance with gas quality requirements arising from applicable standards while at the same time lowering the costs of investment, service and environmental protection. Therefore, the purpose of this work was to develop an efficient mobile technology for natural gas treatment, on the basis of advanced filtering and coalescing materials and membranes, which eliminate the existing, economically non-viable processes and reduce the costs related to development of new reservoirs. The purpose of designed materials was removal of solid particles, water, higher hydrocarbons and nitrogen from natural gas. Presented integrated filtration and membrane system, characterized by a highly compact design enabling installation in container stations and transporting the system between specific points of production.
Rocznik
Strony
61--72
Opis fizyczny
Bibliogr. 34 poz., ryc., wykr., tab., fot.
Twórcy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, phone +48 22 234 62 47, fax +48 22 825 1440
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, phone +48 22 234 62 47, fax +48 22 825 1440
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, phone +48 22 234 62 47, fax +48 22 825 1440
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, phone +48 22 234 62 47, fax +48 22 825 1440
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, phone +48 22 234 62 47, fax +48 22 825 1440
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warszawa, Poland
Bibliografia
  • [1] BP Statistical Review of World Energy, June 2017. www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.
  • [2] Faramawy S, Zaki T, Sakr AAE. Natural gas origin, composition, and processing: A review. J Nat Gas Sci Eng. 2016;34:34-54. DOI: 10.1016/j.jngse.2016.06.030.
  • [3] Polska Norma PN-C-04753: 2011. Gaz ziemny - Jakość gazu dostarczanego odbiorcom z sieci dystrybucyjnej (Polish Standard PN-C-04753: 2011: Natural gas - The quality of gas supplied to customers from the distribution network). http://sklep.pkn.pl/pn-c-04753-2011p.html.
  • [4] Alcheikhhamdon Y, Hoorfar M. Natural gas quality enhancement: A review of the conventional treatment processes, and the industrial challenges facing emerging technologies. J Nat Gas Sci Eng. 2016;34:689-701. DOI: 10.1016/j.jngse.2016.07.034.
  • [5] Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, et al. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies, J Petrol Sci Eng. 2012;94-95:123-154. DOI: 10.1016/j.petrol.2012.06.016.
  • [6] Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Ind Eng Chem Res. 2009;48(10):4638-4663. DOI: 10.1021/ie8019032.
  • [7] Szwast M. Membrany polimerowe do rozdzielania gazów (Polymeric membranes for gas separation). Przem Chem. 2012;91:1356-1361. www.sigma-not.pl/publikacja-69470-membrany-polimerowe-do-rozdzielaniagaz%C3%B3w-przemysl-chemiczny-2012-7.html.
  • [8] Bodzek M. Inorganic micropollutants removal by means of membrane processes. Ecol Chem Eng S. 2013;20(4):633-658. DOI: 10.2478/eces-2013-0044.
  • [9] Scholes CA, Stevens GW, Kentish SE. Membrane gas separation applications in natural gas processing. Fuel. 2012;96:15-28. DOI: 10.1016/j.fuel.2011.12.074.
  • [10] Baker RW, Lokhandwala K. Natural gas processing with membranes: an overview. Industrial Eng Chem Res. 2008;47(7):2109-2121. DOI: 10.1021/ie071083w.
  • [11] Bernardo P, Drioli E. Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Petroleum Chem. 2010;50(4):271-282. DOI: 10.1134/S0965544110040043.
  • [12] Zhang CH, Yang FL, Wang WJ, Chen B. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Separat Purif Technol. 2008;61(3):276-286. DOI: 10.1016/j.seppur.2007.10.019.
  • [13] Zhu J, Fan Y, Xu N. Modified dip-coating method for preparation of pinhole-free ceramic membranes. J Membrane Sci. 2011;367(1):14-20. DOI: 10.1016/j.memsci.2010.10.024.
  • [14] Szwast M. Nowe membrany do osuszania gazu ziemnego (New membranes for dehydration of natural gas). Przem Chem. 2015;94(12):2213-2217. DOI: 10.15199/62.2015.12.25.
  • [15] Snowdon LR. Natural gas composition in a geological environment and the implications for the processes of generation and preservation. Organic Geochem. 2001;32(7):913-931. DOI: 10.1016/S0146-6380(01)00051-1.
  • [16] Freeman C, Moridis GJ, Michael GE, Blasingame TA. Measurement, modeling, and diagnostics of flowing gas composition changes in shale gas wells. In: SPE Latin America Caribbean Petroleum Eng Conf. Soc Petroleum Engineers. 2012. DOI: 10.2118/153391-MS.
  • [17] Koros WJ, Walker DRB. Gas separation membrane material selection criteria: weakly and strongly interacting feed component situations. Polymer J. 1991;23(5):481-490. DOI: 10.1295/polymj.23.481.
  • [18] Sridhar S, Smitha B, Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes - a review. Separation Purif Rev. 2007;36(2):113-174. DOI: 10.1080/15422110601165967.
  • [19] Metz SJ, Van de Ven WJC, Potreck J, Mulder MHV, Wessling M. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. J Membrane Sci. 2005;251(1-2):29-41. DOI: 10.1016/j.memsci.2004.08.036.
  • [20] Baisong L, Zhongli J, Xue Y. Evaluation of gas-liquid separation performance of natural gas filters. Petrol Sci. 2009;6:438-444. DOI: 10.1007/s12182-009-0067-z.
  • [21] Zhen L, Zhongli J, Jinfeng Z, Lanjie L. Influence of processing parameters on gas-liquid filtration performance of fibrous filter cartridge. Procedia Eng. 2015;102:911-920. DOI: 10.1016/j.proeng.2015.01.212.
  • [22] Thomas D, Contal P, Renaudin V, Penicot P, Leclerc D, Vendel J. Modelling of pressure drop in HEPA filters during dynamic filtration. J Aerosol Sci. 1999;30:235-246. DOI: 10.1016/S0021-8502(98)00036-6.
  • [23] Frising T, Thomas D, Bemer D, Contal P. Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modeling study. Chem Eng Sci. 2005;60:2751-2762. DOI: 10.1016/j.ces.2004.12.026.
  • [24] Kasper G, Schollmeier S, Meyer J, Hoferer J. The collection efficiency of a particle-loaded single fiber. J Aerosol Sci. 2009;40:993-1009. DOI: 10.1016/j.jaerosci.2009.09.005.
  • [25] Boskovic L, Agranovski IE, Braddock RD. Filtration of nanosized particles with different shape on oil coated fibres. J Aerosol Sci. 2007;38:1220-1229. DOI: 10.1016/j.jaerosci.2007.09.003.
  • [26] Müller TK, Meyer J, Thébault E, Kasper G. Impact of an oil coating on particle deposition and dust holding capacity of fibrous filters. Powder Technol. 2014;253:247-255. DOI: 10.1016/j.powtec.2013.11.036.
  • [27] Kasper G, Schollmeier S, Mayer J. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J Aerosol Sci. 2010;41:1167-1182. DOI: 10.1016/j.jaerosci.2010.08.006.
  • [28] Kralchevsky PA, Paunov VN, Nagayama K. Lateral capillary interaction between particles protruding from a spherical liquid layer. J Fluid Mech. 1995;99:105-132. DOI: 10.1017/S0022112095003442.
  • [29] Lian G, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci. 1993;161:138-147. DOI: 10.1006/jcis.1993.1452.
  • [30] Gac JM, Jackiewicz A, Werner Ł, Jakubiak S. Consecutive filtration of solid particles and droplets in fibrous filters. Sep Purif Technol. 2016;170:234-240. DOI: 10.1016/j.seppur.2016.06.057.
  • [31] Podgórski A, Maisser A, Szymanski WW, Jackiewicz A, Gradoń L. Penetration of monodisperse, singly charged nanoparticles through polydisperse fibrous filters. Aerosol Sci Tech. 2011;45(2):196-214. DOI: 10.1080/02786826.2010.531300.
  • [32] Jackiewicz A, Podgórski A, Gradoń L, Michalski J. Nanostructured media to improve the performance of fibrous filters. KONA Powder Part J. 2013;30:244-255. DOI: 10.14356/kona.2013023.
  • [33] Jackiewicz A, Bałazy A, Podgórski A. Investigation of aerosol dispersion in fibrous filters. Pol J Chem Technol. 2008;10(1):66-72. DOI: 10.2478/v10026-008-0016-4.
  • [34] Bondar V, Freeman BD, Pinnau I, Gas transport properties of poly(ether-b-amide) segmental block copolymers. J Polym Sci B. 2000;38:2051-2062. DOI: 10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e8400a3-cda0-47b1-b70b-b1931f676567
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.