PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational intelligence approach for NOx emissions minimization in a 30 MW premixed gas burner

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial intelligence algorithms have become a research hotspot in attempts to reduce NOx emissions in gas burners through NOx emission modeling and optimizing operating parameters. This paper compres the predictive accuracy of NOx emission models based on LSSVM, SVR and ELM. CGA and three other GA based hybrid algorithms proposed to modify CGA were employed to optimize the operating parameters of a 30MW gas burner in order to reduce NOx emission. The results show that the NOx emission model built by LSSVM is more accurate than that of SVR and ELM. The mean relative error and correlation coefficient obtained by the LSSVM model were 0.0731% and 0.999, respectively. Among the four optimization algorithms, the novel TSGA proposed in this paper showed its superiority over the other three algorithms, excelling in its global searching ability and stability. The LSSVM plus TSGA method is a potential combination for predicting and reducing NOx emission by optimizing the operating parameters for the gas burner on-line.
Rocznik
Strony
21--31
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Automotive Engineering, South China University of Technology
autor
  • School of Mechanical Automotive Engineering, South China University of Technology
Bibliografia
  • 1. González, M.A., Oddi, A., Rasconi, R., and Varela, R. (2015) Scatter search with path relinking for the job shop with time lags and setup times. Computers & Operations Research, 60, 37–54.
  • 2. Xie, K., Li, W., and Zhao, W. (2010) Coal chemical industry and its sustainable development in China. Energy, 35 (11), 4349–4355.
  • 3. Wu, S. (2002) Air-Surrounding-Fuel(ASF) pulverized coal bias combustion technology with low Nox emission. Chinese Journal of Mechanical Engineering, 38 (01), 108.
  • 4. Bartoszek, F.E., Vásquez, L.R., HE, W., and Chang, J.S. (1998) Removal of NOxfrom Flue Gas by Reburning with Plasma Activated Natural Gas: Review and Economics. Combustion Science and Technology, 133 (1-3), 161–190.
  • 5. Seputro, S., and Sudarmanta, B. (2019) Numerical Investigation of Over Fire Air (OFA) Effect on Flow Characteristics NOx Combustion and Emission in a 600 Mw Tangentially Fired Pulverized Coal Boiler. IPTEK The Journal of Engineering, 5 (2).
  • 6. Hiramatsu, T., Najafabadi, H.M., Kobayashi, N., and Itaya, Y. (2012) Non-Catalytic Decomposition of NO by Microwave Plasma Induced at Atmospheric Pressure in an Activated Coke Bed. KAGAKU KOGAKU RONBUNSHU, 38 (6), 397–402.
  • 7. Zhang, X. (2009) Effects of Stereo-staged Combustion Technique on NOx Emmision Charactisctics. Chinese Journal of Mechanical Engineering, 45 (02), 199.
  • 8. Zheng, L., Zhou, H., Wang, C., and Cen, K. (2008) Combining Support Vector Regression and Ant Colony Optimization to Reduce NOx Emissions in Coal-Fired Utility Boilers. Energy & Fuels, 22 (2), 1034–1040.
  • 9. Kowalczyk, B. (2014) Model of an ANSALDO V94.2 gas turbine from Lublin Wrotków Combined Heat and Power Plant using GateCycle™ software. Journal of Power Technologies, 94.
  • 10. Isaza, C.V., Sarmiento, H.O., Kempowsky-Hamon, T., and LeLann, M.-V. (2014) Situation prediction based on fuzzy clustering for industrial complex processes. Information Sciences, 279, 785–804.
  • 11. Li, G., Niu, P., Wang, H., and Liu, Y. (2014) Least Square Fast Learning Network for modeling the combustion efficiency of a 300WM coal-fired boiler. Neural Networks, 51, 57–66.
  • 12. Li, G., Niu, P., Ma, Y., Wang, H., and Zhang, W. (2014) Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency. Knowledge-Based Systems, 67, 278–289.
  • 13. Sainlez, M., and Heyen, G. (2013) Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill. Journal of Computational and Applied Mathematics, 246, 329–334.
  • 14. Li, G., Niu, P., Liu, C., and Zhang, W. (2012) Enhanced combination modeling method for combustion efficiency in coal-fired boilers. Applied Soft Computing, 12 (10), 3132–3140.
  • 15. Rusinowski, H., and Stanek, W. (2010) Hybrid model of steam boiler. Energy, 35 (2), 1107–1113.
  • 16. Kalogirou, S.A. (2003) Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science, 29 (6), 515–566.
  • 17. Lee, J.W., Park, Y.J., Kim, I.T., and Lee, K.W. (2008) Clinical Results After Application of Bevacizumab in Recurrent Pterygium. Journal of the Korean Ophthalmological Society, 49 (12), 1901.
  • 18. Yin, C., Rosendahl, L., Clausen, S., and Hvid, S.L. (2012) Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons. Energy, 41 (1), 473–482.
  • 19. Lopes, C., and Perdigão, F. (2008) Event Detection by HMM SVM and ANN: A Comparative Study, in Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 1–10.
  • 20. Smrekar, J., Potočnik, P., and Senegačnik, A. (2013) Multi-step-ahead prediction of NOx emissions for a coal-based boiler. Applied Energy, 106, 89–99.
  • 21. Guo, M.L., Li, D.J., Du, C.B., Jia, Z.H., Qin, X.Z., Chen, L., Sheng, L., and Li, H. (2012) Prediction of the Busy Traffic in Holidays Based on GA-SVR, in Advances in Intelligent and Soft Computing, Springer Berlin Heidelberg, pp. 577–582.
  • 22. Lu, Y., and Roychowdhury, V. (2007) Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR). Knowledge and Information Systems, 14 (2), 233–247.
  • 23. Hong, W.-C., Dong, Y., Chen, L.-Y., and Wei, S.Y. (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Applied Soft Computing, 11 (2), 1881–1890.
  • 24. Wei, Z., Li, X., Xu, L., and Cheng, Y. (2013) Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler. Energy, 55, 683–692.
  • 25. Chamkalani, A., Zendehboudi, S., Bahadori, A., Kharrat, R., Chamkalani, R., James, L., and Chatzis, I. (2014) Integration of LSSVM technique with PSO to determine asphaltene deposition. Journal of Petroleum Science and Engineering, 124, 243–253.
  • 26. Wu, J., Shen, J., Krug, M., Nguang, S.K., and Li, Y. (2011) GA-based nonlinear predictive switching control for a boiler-turbine system. Journal of Control Theory and Applications, 10 (1), 100–106.
  • 27. Zhou, H., Lu, J., Cao, Z., Shi, J., Pan, M., Li, W., and Jiang, Q. (2011) Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene. Fuel, 90 (12), 3521–3530.
  • 28. Ahmadi, M.A., and Ebadi, M. (2014) Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel, 117, 1074–1084.
  • 29. Ahmadi, M.-A., Bahadori, A., and Shadizadeh, S.R. (2015) A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature. Fuel, 139, 154–159.
  • 30. Ahmadi, M.A., Zahedzadeh, M., Shadizadeh, S.R., and Abbassi, R. (2015) Connectionist model for predicting minimum gas miscibility pressure: Application to gas injection process. Fuel, 148, 202–211.
  • 31. Sels, V., Coelho, J., Dias, A.M., and Vanhoucke, M. (2015) Hybrid tabu search and a truncated branchand-bound for the unrelated parallel machine scheduling problem. Computers & Operations Research, 53, 107–117.
  • 32. Glover F, L.M. (1997) Tabu search, Kluwer Academic Publishers.
  • 33. Gendreau M, P.J.-Y. (2010) Handbook of metaheuristics, Springer.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e83e3cf-f0fc-418a-8e4f-d24c36ee7971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.