PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indices of Soil and Plant Cover Pollution Due to Re-Introduction of Sediment Water Under the Energy Willow on Aluvisol of Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Municipal sewage sludge is considered as an important resource for replenishing organic carbon and mineral nutrition elements in the soil. However, its widespread use in the agricultural sector is associated with the risks of soil contamination by pollutants, in particular heavy metals, and their inclusion in trophic food chains. A relatively ecologically safe way to dispose of sewage sludge is to apply it to energy crops.In order to study the influence of sewage sludge application on the ecological condition of podzolic soil and the level of heavy metal contamination of plant cover, research was carried out in the Transcarpathian region of Ukraine on a willow plantation of the second cycle of energy use and repeated application of fresh sewage sludge and its composts with coniferous sawdust and grain straw cultures in different doses.Research has established that under the influence of the application of sewage sludge, the indicators of the content of heavy metals in the roots and above-ground shoots of energy willow significantly changed. The highest doses of sewage sludge of 60–80 t/ha led to a significant increase in the content of As, Mo, and Pb compared to other research options. The content of Fe, Zn, Sr, Y in these options was at the level of the option where compost was applied (sewage sludge + straw (3:1) + cement dust 10%) – 40 t/ha. Also, the use of cement dust in this version led to the highest Nb content. Ni, Cu.An increase in the content of heavy metals in the soil led to an increase in the translocation of heavy metals in energy willow plants. Application of the highest dose of sewage sludge in the experiment –80 t/ha (option 5) caused the highest translocation coefficients of Fe, Nb, Rb, Y, Mo. And the highest values of Sr, As, Pb translocation coefficients were noted in option 10, where compost was applied (sewage sludge + straw (3:1) + cement dust 10%) ‒ 40 t/ha, which indicates a significant influx of cement dust into the accumulation of these dangerous metals in plants. The highest value of the Integral index of energy willow plant pollution ‒ 222 was recorded in the variant where fresh sewage sludge was applied at the rate of 80 t/ha, which was 17‒20 points higher than the values of the closest variants of the experiment.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Hugo Kollataj University of Agriculture in Krakow, 31-120, 21 Mickiewicz Ave., Krakow, Poland
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
Bibliografia
  • 1. Bolesta W., Głodniok M., Styszko K. (2022). From sewage sludge to the soil – transfer of pharmaceuticals: A review. International Journal of Environmental Research and Public Health; 19(16):10246. https://doi.org/10.3390/ijerph191610246.
  • 2. Buta M., Hubeny J., Zieliński W., Harnisz M., Korzeniewska E. (2021). Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicology and Environmental Safety, Volume 214, https://doi.org/10.1016/j.ecoenv.2021.112070.
  • 3. Dhanker R., Chaudhary S., Goyal S., Kumar Garg V. (2021). Influence of urban sewage sludge amendment on agricultural soil parameters.Environmental Technology & Innovation, Volume 23.https://doi.org/10.1016/j.eti.2021.101642.
  • 4. Ding Gao, Xin-yu Li, Hong-tao Liu. (2020). Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Science of The Total Environment, 2020. Volume 742. https://doi.org/10.1016/j.scitotenv.2020.140355.
  • 5. Eid E.M., Alamri S.A.M., Shaltout K.H., Galal T.M., Ahmed M.T., Brima, E.I., Sewelam N. (2020). A sustainable food security approach: Controlled land application of sewage sludge recirculates nutrients to agricultural soils and enhances crop productivity. Food and Energy Security, 9(2). doi:10.1002/fes3.197
  • 6. Elmi A., Al-Khaldy A., Al-Olayan M. (2020). Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. Journal of Cleaner Production, Volume 250, https://doi.org/10.1016/j.jclepro.2019.119512.
  • 7. Golui, D., Datta, S.P., Dwivedi, B.S., Meena, M.C., Varghese, E., Sanyal, S.K., Trivedi, V.K. (2019). Assessing soil degradation in relation to metal pollution – a multivariate approach. Soil and Sediment Contamination: An International Journal, 28(7), 630–649. doi:10.1080/15320383.2019.1640660
  • 8. Hoang, S.A., Bolan, N., Madhubashani, A.M.P., Vithanage, M., Perera, V., Wijesekara, H., Siddique, K.H.M. (2022). Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environmental Pollution, 293, 118564. doi:10.1016/j.envpol.2021.118564
  • 9. Hryshko V. M., Piskova O. M. (2014). Osoblyvosti akumulyatsiyi vazhkykh metaliv u lystkakh derevnykh roslyn pry aerohennomu zabrudnenni ekotopiv. Introduktsiya roslyn. № 1(61). S. 93–100.
  • 10. KalenskaS., NovytskaN., StolyarchukT., KalenskyiV., GarbarL., SadkoM., ShutiyO., SonkoR. (2021). Nanopreparations in technologies of plant growing. Agronomyresearch.19(1). https://doi.org/10.15159/AR.21.017.
  • 11. Kirchmann H., Börjesson G., Kätterer T. et al. (2017). From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio 46, 143–154. https://doi.org/10.1007/s13280-016-0816-3
  • 12. Korsun, S.H., Klymenko, I.I., Bolokhovsʹka, V.A., Bolokhovsʹkyy, V.V. (2019). Influence of liming and biological preparations on the translocation of heavy metals in the soil-plant system for polluting ecotops of lead, cadmium, zinc. Agroecological journal, (1), 29–35. doi:10.33730/2077-4893.1.2019.163245.
  • 13. Kumar, V., Chopra, A. K., & Kumar, A. (2017). A review on sewage sludge (biosolids) a resource for sustainable agriculture. Archives of Agriculture and Environmental Science, 2(4), 340–347. doi:10.268 32/24566632.2017.020417
  • 14. Lamastra, L., Suciu, N. A., &Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture, 5(1). doi:10.1186/s40538-018-0122-3
  • 15. Latosińska J, Kowalik R, Gawdzik J. Risk (2021). Assessment of Soil Contamination with Heavy Metals from municipal sewage sludge. Applied Sciences. 11(2):548. https://doi.org/10.3390/app11020548
  • 16. Lopushniak V., Gritsulyak G., Yakubovsky T., Barchak B., Savyuk R. (2020). Formation of energy willow productivity with re-introduction of sewerage. Ukrainian Black sea Region agrarian science. Vol. 2. p. 63–70.doi: 10.31521/2313-092X/2020-2(106)-7
  • 17. Lopushniak, V., Hrytsuliak, H., Gamayunova, V.,Kozan N., Zakharchenko E., Voloshin Y., Lopushniak H., Polutrenko, M., Kotsyubynska, Y. (2022). Α dynamics of macro elements content in eutric podzoluvisols for separation of wastewater under Jerusalem Artichokes. Journal of Ecological Engineering, 2022, 23(4), pp. 33–42. doi: https://doi.org/10.12911/22998993/146268
  • 18. Lopushnyak V., Hrytsulyak G. (2014). Productivity formation model of Osier (Salix viminalis) agrocenosis. Motrol. Lublin – Rzeszow. Vol. 16. № 4. Р. 77–81
  • 19. Lopushnyak, V., Hrytsulyak, H., Voloshin, Y., Lopushniak, H., Baran, B. (2022). Bioaccumulation and translocation of heavy metals in plants artichoke during sewage sediment in podzols soils. Ecological Engineering & Environmental Technology, 23(6), 178–187. doi:10.12912/27197050/152919
  • 20. Luczkiewicz A. (2006). Soil and groundwater contamination as a result of sewage sludge land application. Polish J. of Environ. Vol. 15, No. 6. P. 869–876. 21.
  • 21. Markowicz A., Bondarczuk K., Wiekiera A. et al. (2021). Is sewage sludge a valuable fertilizer? A soil microbiome and resistome study under field conditions. J Soils Sediments 21, 2882–2895. https://doi.org/10.1007/s11368-021-02984-122.
  • 22. Mosquera-L osadaR., Amador-García A., Muñóz-Ferreiro N., Santiago-Freijanes J., Ferreiro-Domínguez N., Romero-Franco R., Rigueiro-Rodríguez A. (2017). Sustainable use of sewage sludge in acid soils within a circular economy perspective, CATENA, Volume 149, Part 1. P. 341–348. https://doi.org/10.1016/j.catena.2016.10.007.
  • 23. Nunes N., Ragonezi C., Gouveia C., Pinheiro de Carvalho M. (2021). Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability. 13, 2317. https://doi.org/10.3390/su13042317
  • 24. Panasiewicz, K., Niewiadomska, A., Sulewska, H., Wolna-Maruwka, A., Borowiak, K., Budka, A., Ratajczak, K. (2019). The effect of sewage sludge and BAF inoculant on plant condition and yield as well as biochemical and microbial activity of soil in willow (Salix viminalisL.) culture as an energy crop. PeerJ, 7, e6434. doi:10.7717/peerj.6434
  • 25. PöykiöR., Watkins G., Dahl O. (2019). Characterization of municipal sewage sludge as a soil improver and a fertilizer product. ECOL. CHEM. ENG. S. 26(3):547–557. DOI: 10.1515/eces-2019-0040
  • 26. Pulkrabová, J., Černý, J., Száková, J., Švarcová, A.,Gramblička, T., Hajšlová, J., Tlustoš, P. (2019). Is the long-term application of sewage sludge turning soil into a sink for organic pollutants?: evidence from field studies in the Czech Republic. Journal of Soils and Sediments, 19(5), 2445–2458. doi:10.1007/s11368-019-02265-y
  • 27. Rivier, P.-A., Havranek, I., Coutris, C., Norli, H. R., &Joner, E. J. (2019). Transfer of organic pollutants from sewage sludge to earthworms and barley under field conditions. Chemosphere, 222, 954–960. doi:10.1016/j.chemosphere.2019.02.010
  • 28. Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims. Bioenergy from wastewaterbased biomass. AIMS Bioengineering, 2016, 3(1): 103-124. doi: 10.3934/bioeng.2016.1.103
  • 29. Rorat A., Courtois P., Vandenbulcke F., Lemiere S. (2019). Sanitary and environmental aspects of sewage sludge management. Industrial and Municipal Sludge, Butterworth-Heinemann, P. 155-180, https://doi.org/10.1016/B978-0-12-815907-1.00008-8.
  • 30. Rybalova O.V., Korobkina K.M. (2017) Novyi pidkhid do otsinky zabrudnennia hruntiv vazhkymy metalamy. Topical Problems of Modern Science. Vol. 5. S. 86‒89.
  • 31. Rybalova O., Bryhada O., Sarapina M. (2020). Suchasn metody intehralʹnoyiotsinky zabrudnennya gruntiv khimichnymy rechovynamy. Dynamics of the development of world science: The 8-th International scientific and practical conference (April 15–17, 2020). Vancouver, Canada. S. 764–771.
  • 32. Sas, E., Hennequin, L.M., Frémont, A., Jerbi, A., Legault, N., Lamontagne, J., Pitre, F.E. (2021). Biorefinery potential of sustainable municipal wastewater treatment using fast-growing willow. Science of The Total Environment, 792, 148146. doi:10.1016/j.scitotenv.2021.148146.
  • 33. Sims, R., K. Bedingfield, S., Thompson, R., & L. Sims, J. (2016). Bioenergy from wastewater-based biomass. AIMS Bioengineering, 3(1), 103–124. doi:10.3934/bioeng.2016.1.103
  • 34. Skowrońska M., Bielińska E., Szymański K., Futa B., Antonkiewicz J., Kołodziej B. (2020). An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil, CATENA, Volume 189, https://doi.org/10.1016/j.catena.2020.104484
  • 35. Skrylnyk Ye.V. Maksymenko N. V., Ryzhkova Ya. S., Cherkashyna N. I., Dobronos P. A. (2020). Agro-environmental rationale of sewage sludge processing and application. Man and Environment. Issues of Neoecology. (33). https://doi.org/10.26565/1992-4224-2020-33-12
  • 36. Stachowicz, F., Trzepiecińsk, T., Wójcik, M., Masłoń, A., Niemiec, W., & Piech, A. (2016). Agricultural utilisation of municipal sludge in willow plantation. E3S Web of Conferences, 10, 00088. doi:10.1051/e3sconf/20161000088
  • 37. Tsvetkov, I., Tzvetkova, N., & Marinova, S. (2021). Effect of wastewater sludge treatment on early growth and physiological responses of willow (Salix spp.) and poplar (Populus spp.) pot-grown plants. Silva Balcanica, 22(1), 57–65. doi:10.3897/silvabalcanica.22.e58528
  • 38. Wójcik, M., & Stachowicz, F. (2018). The application of biomass ashes in sewage sludge management – a SWOT analysis. E3S Web of Conferences, 44, 00196. doi:10.1051/e3sconf/20184400196
  • 39. Wolna-Maruwka, A., Sulewska, H., Niewiadomska, A., Panasiewicz, K., Borowiak, K., & Ratajczak, K. (2018). The influence of sewage sludge and a consortium of aerobic microorganisms added to the soil under a willow plantation on the biological indicators of transformation of organic nitrogen compounds. Polish Journal of Environmental Studies, 27(1), 403–412. doi:10.15244/pjoes/74184
  • 40. Wydro U., Jabłońska-Trypuć A., Hawrylik E., Butarewicz A., Rodziewicz J., Janczukowicz W., Wołejko E. (2021). Heavy metals behavior in soil/plant system after sewage sludge application. Energies. 14(6):1584. https://doi.org/10.3390/en14061584
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e7df4e7-3483-4624-a0db-e51d011638ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.