Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we extend the results of Inprasit and Wattanataweekul [7] to the class of asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense. We prove some strong convergence theorems for asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense using a three-step iterative method for finding a common element of the set of solutions of a generalized mixed equilibrium problem and the set of common fixed points of a finite family of nonexpansive mappings in a real Hilbert space. Our results extends, improves, unifies and generalizes the results of [13], [25] and [27].
Czasopismo
Rocznik
Tom
Strony
93--115
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Mathematics University of Lagos Lagos, Nigeria
autor
- Department of Mathematics University of Lagos Lagos, Nigeria
Bibliografia
- [1] Bnouhachem A., Noor M.A., Rassias Th.M., Three-steps iterative algorithms for mixed variational inequalities, Appl. Math. Comput., 183(2006), 436-446.
- [2] Bruck R.E., Kuczumow T., Reich S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloquium Mathematicum, 65(2)(1993), 169-179.
- [3] Chidume C.E., Geometric properties of Banach spaces and nonlinear iterations, Springer, 2008.
- [4] Fukhar-Ud-Din H., Khan S.H., Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl., 328(2007), 821-829.
- [5] Glowinski R., Le Tallec P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989.
- [6] Goebel K., Kirk W., A fixed point theorem for asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 35(1972), 171-174.
- [7] Inprasit U., Wattanataweekul H., Common fixed points of a new three-step iteration with errors of asymptotically quasi-nonexpansive non-self-mappings in Banach spaces, Journal of Nonlinear Analysis and Optimization, 1(1)(2010), 169-182.
- [8] Khan S.H., Takahashi W., Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., 53(2001), 133-138.
- [9] Khan S.H., Fukhar-Ud-Din H., Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal., 8(2005), 1295-1301.
- [10] Kirk W.A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel Journal of Mathematics, 17(1974), 339-346.
- [11] Mogbademu A.A., Olaleru J.O., Modified Noor iterative methods for a family of strongly pseudocontractive maps, Bulletin of Mathematical Analysis and Applications, 3(4)(2011), 132-139.
- [12] Nammanee K., Noor M.A., Suantai S., Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl., in press.
- [13] Nilsrakoo W., Saejung S., A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, J. Appl. Math. Comput., 181(2006), 1026-1034.
- [14] Noor M.A., New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(2000), 217-229.
- [15] Noor M.A., Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl., 255(2001), 589-604.
- [16] Noor M.A., Some developments in general variational inequalities, Appl. Math. Comput., 152(2004), 199-277.
- [17] Noor M.A., Kassias T.M., Huang Z., Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., 274(2001), 59-68.
- [18] Olaleru J.O., Mogbademu A.A., On the modified Noor iteration scheme for non-linear maps, Acta Math. Univ. Comenianae, LXXX, 2(2011), 221-228..
- [19] Olaleru J.O., Mogbademu A.A., Approximation of fixed points of strongly successively pseudocontractive maps in Banach space, International Journal of Computational and Applied Mathematics, 7(2)(2012), 121-132.
- [20] Opial Z., Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
- [21] Qihou L., Iteration sequences for asymptotically quasi-nonexpansive map-ping with an error member of uniform convex Banach space, J. Math. Anal. Appl., 266(2002), 468-471.
- [22] Schu J., Iterative construction of fixed points of asymptotically nonexpansive mappings, Mathematical Analysis and Applications, 158(2)(1991), 407-413.
- [23] Senter H.F., Dotson W.G., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(1974), 375-380.
- [24] Shahzad N., Udomene A., Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2006), article ID 18909, 10 pages.
- [25] Suantai S., Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311(2005), 506-517.
- [26] Tan K.-K., Xu H.K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications, 178(2)(1993), 301-308.
- [27] Xu B.L., Noor M.A., Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267(2002), 444-453.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e7c30a3-0752-43b4-9894-0458e5c09611