PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion resistance of sintered AISI 316L–hydroxyapatite biomaterials in Ringer’s solution

Identyfikatory
Warianty tytułu
PL
Odporność na korozję spiekanych biomateriałów AISI 316L–hydroksyapatyt w roztworze Ringera
Języki publikacji
EN
Abstrakty
EN
AISI 316L–hydroxyapatite biomaterials were produced by the conventional powder metallurgy technology. In the case of materials such as these, proper and long-term functioning in the aggressive environment of body fluids is very important. Therefore, the purpose of this study was to determine the effect of hydroxyapatite content and sintering temperature on the properties including sintered density, open porosity, and in particular corrosion resistance of AISI 316L–hydroxyapatite biomaterials in Ringer’s solution. The measurement of sintered density and open porosity of studied materials was carried out by the water-displacement method. The corrosion behaviour was studied by open circuit potential measurement and potentiodynamic polarization method. It was stated that the properties of studied biomaterials are dependent on chemical composition of powders mixture and sintering temperature. The results showed that higher sintering temperature ensured to obtain lower values of corrosion current density and corrosion rate, and higher value of polarization resistance. The addition of 5 wt % hydroxyapatite provided to a significant improvement of corrosion resistance in Ringer’s solution in comparison to AISI 316L steel, while a slight decrease in corrosion resistance was observed for AISI 316L–10 wt % hydroxyapatite biomaterials. Passivation ability and better corrosion resistance indicate that sintered at 1240°C AISI 316L–5 wt % hydrohyapatite biomaterials is more appropriate for long-term functioning implants than AISI 316L steel. This biomaterial possessed good densification and the best corrosion resistance among all studied materials, as evidenced by the lowest corrosion current density and corrosion rate combined with the highest polarization resistance.
PL
W przypadku biomateriałów właściwe i długotrwałe funkcjonowanie w agresywnym środowisku płynów ustrojowych jest bardzo ważne. Austenityczne stale nierdzewne przy dobrych właściwościach mechanicznych wykazują jednak znaczną podatność na korozję elektrochemiczną, natomiast hydroksyapatyt charakteryzuje się bardzo dobrą biozgodnością i odpornością na korozję. Wprowadzenie dodatku hydroksyapatytu może wpłynąć na poprawę odporności korozyjnej, biozgodności, ale także właściwości tribologicznych stali AISI 316L. W pracy dokonano oceny odporności na korozję w roztworze Ringera spiekanych biomateriałów AISI 316L– hydroksyapatyt. Ponadto określono gęstość i porowatość otwartą otrzymanych materiałów. Na podstawie przeprowadzonych badań potencjodynamicznych i wyznaczonych parametrów korozyjnych określono wpływ zawartości hydroksyapatytu i temperatury spiekania na odporność na korozję badanych materiałów.
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
  • Cracow University of Technology, Institute of Material Engineering, Cracow
Bibliografia
  • [1] Niinomi M.: Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials 4 (2003) 445÷454.
  • [2] Mucalo M.: Hydroxyapatite (HAp) for biomedical applications. Woodhead Publishing, Elsevier Ltd. (2015).
  • [3] Gurappa I.: Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization 49 (2002) 73÷79.
  • [4] Silva G., Baldissera M. R., Trichês E., Cardoso K. R.: Preparation and characterization of stainless steel 316L/HA biocomposite. Materials Research 16 (2) (2013) 304÷309.
  • [5] Sridhar T. M., Kamachi Mudali U., Subbaiyan M.: Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corrosion Science 45 (2003) 2337÷2359.
  • [6] Ramli M. I., Sulong A. B., Muhamad N., Muchtar A., Arifin A.: Stainless steel 316L–hydroxyapatite composite via powder injection moulding: rheological and mechanical properties characterization. Materials Research Innovations 18 (S6) (2014) 100÷104.
  • [7] Tulinski M., Jurczyk M.: Corrosion resistance of nickel-free austenitic stainless steels/hydroxyapatite composites. Phys Status Solidi C 7 (5) (2010) 1359÷1362.
  • [8] Tulinski M., Jurczyk M.: Mechanical and corrosion properties of Ni-free austenitic stainless steel/hydroxyapatite nanocomposites. Solid State Phenomena 151 (2009) 213÷216.
  • [9] Robin A., Silva G., Rosa J. L.: Corrosion behavior of HA–316L SS biocomposites in aqueous solutions. Materials Research 16 (6) (2013) 1254÷1259.
  • [10] Ruan J. M., Zou J. P., Zhou Z. C.: Hydroxyapatite–316L stainless steel fibre composite biomaterials fabricated by hot pressing. Powder Metallurgy 49 (1) (2006) 62÷65.
  • [11] Miao X.: Observation of microcracks formed in HA–316L composites. Materials Letters 57 (2003) 1848÷1853.
  • [12] Ibrahim M. H. I., Mustafa N., Amin A. M., Asmawi R.: Mechanical properties of SS316L and natural hydroxyapatite composite in metal injection molding. ARPN Journal of Engineering and Applied Sciences 11 (12) (2016) 7572÷7577.
  • [13] Garbiec D., Gierzyńska-Dolna M.: 316L–HAp composites synthesized by spark plasma sintering method (SPS). Composites Theory and Practice 14 (1) (2014) 29÷32.
  • [14] Szewczyk-Nykiel A., Kazior J., Nykiel M.: Characterization of AISI 316L–hydroxyapatite composite biomaterials. Technical Transactions, Mechanics 6 (2009) 39÷44.
  • [15] Szewczyk-Nykiel A., Nykiel M.: Study of hydroxyapatite behavior during sintering of 316L steel. Archives of Foundry Engineering 10 (3) (2010) 235÷240.
  • [16] Szewczyk-Nykiel A., Kazior J., Nykiel M.: Sintered AISI 316L–hydroxyapatite composite biomaterials. Technical Transactions, Mechanics 6 (2012) 115÷125.
  • [17] Szewczyk-Nykiel A., Nykiel M.: Analysis of the sintering process of 316L–hydroxyapatite composite biomaterials. Technical Transactions, Mechanics 3-M (2015) 79÷92.
  • [18] Dudek A., Przerada I.: Metallic and ceramic composites for application in medicine. Ceramic Materials 62 (1) (2010) 20÷23.
  • [19] Jian-Peng Z., Jian-Ming R., Bai-Yun H., Jian-Ben L., Xiao-Xia Z.: Physico- chemical properties and microstructure of hydroxyapatite–316L stainless steel biomaterials. Journal of Central South University of Technology 11 (2) (2004) 113÷118.
  • [20] Niespodziana K., Jurczyk K., Jakubowicz J., Jurczyk M.: Fabrication and properties of titanium–hydroxyapatite nanocomposites. Materials Chemistry and Physics 123 (2010) 160÷165.
  • [21] Tanigawa H., Asoh H., Ohno T., Kubota M., Ono S.: Electrochemical corrosion and bioactivity of titanium–hydroxyapatite composites prepared by spark plasma sintering. Corrosion Science 7 (2013) 212÷220.
  • [22] Mróz A., Garbiec D., Wiśniewski T., Gierzyńska-Dolna M., Magda J.: Effect of the sintering temperature on tribological wear of 316L and 316L–HAp obtained with the use of spark plasma sintering. Tribologia 2 (2015) 75÷86.
  • [23] Knepper M., Milthorpe B. K., Moricca S.: Interdiffusion in short-fibre reinforced hydroxyapatite ceramics. Journals of Materials Science: Materials in Medicine 9 (1998) 589÷596.
  • [24] Dudek A., Włodarczyk R.: Corrosion resistance in 316L+HAp composites. Composites Theory and Practice 10 (4) (2010) 312÷316.
  • [25] Oshkour A. A., Pramanik S., Mehrali M., Yau Y. H., Tarlochan F., Osman N.: Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. Journal of the Mechanical Behavior of Biomedical Materials 49 (2015) 321÷331.
  • [26] Poinescu A. A., Ion R. M., Vasile B.: Hybrid composite materials with biofunctional properties. Journal of Optoelectronics and Advanced Materials 15 (7–8) (2013) 874÷878.
  • [27] Singh T., Bala N., Singh L.: Characterization and corrosion behavior of hydroxyapatite and hydroxyapatite/titania bond coating on 316L SS substrate in simulated body fluid. International Journal of Surface Engineering & Materials Technology 3 (1) (2013) 5÷9.
  • [28] Gierzyńska-Dolna M., Lijewski M.: Badania tribologicznych właściwości biomateriałów i implantów. Obróbka Plastyczna Metali XXIII (3) (2012) 181÷196.
  • [29] Hao L., Dadbakhsh S., Seaman O., Felstead M.: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. Journal of Materials Processing Technology 209 (5) (2009) 793÷801.
  • [30] Lin J. H., Lou Ch. W., Chang Ch. H., Chen Y. S., Lin G. T., Lee Ch. H.: In vitro study of bone-like apatite coatings on metallic fiber braids. Journal of Materials Processing Technology 192÷193 (2007) 97÷100.
  • [31] Haberko K., Bućko M., Mozgawa W., Pyda A., Zarębski J.: Natural hydroxyapatite — preparation, properties. Engineering of Biomaterials 6 (30÷33) (2003) 32÷37.
  • [32] Dawidowicz A., Pielka S., Paluch D., Kuryszko J., Staniszewska-Kuś J., Solski L.: Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants. Polymers in Medicine 1 (2005) 1÷19.
  • [33] Haberko K.: Natural hydroxyapatite — its behaviour during heat treatment. Journal of the European Ceramic Society 26 (2006) 537÷542.
  • [34] Xiaoying L., Yongbin F., Dachun G., Wei C.: Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Engineering Materials 342–343 (2007) 213÷216.
  • [35] Janus A. M., Faryna M., Haberko K., Rakowska A., Panz T.: Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchim. Acta 161 (3÷4) (2008) 349÷353.
  • [36] Janus A. M., Wojnar L., Brzezińska-Miecznik J.: Environmental scanning electron microscopy and image analysis techniques in biocompatibility investigations of hydroxyapatite of pig origin. Inżynieria Materiałowa 4 (2008) 451÷453.
  • [37] Elkayer A., Elshazly Y., Assaad M.: Properties of hydroxyapatite from bovine teeth. Bone and Tissue Regeneration Insights 2 (2009) 31÷36.
  • [38] Janus A. M., Major R., Faryna M.: Influence of sintering temperature on morphology of dense bioceramics based on hydroxyapatite derived from porcine bones. Inżynieria Materiałowa 31 (3) (2010) 767÷769.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e77f6ea-6daf-4a64-8c4d-7fcbb65e091d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.