Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the development of a multiphase aerodynamic reactor designed for multi-component systems, focusing on precise catalyst dosing in the combustion chamber. The study aims to underscore the significance of this work by emphasizing the critical role of optimized operational conditions in enhancing the transportation of the modifier for combustion processes. Through comprehensive numerical simulations and experimental tests, this research explores the impact of parameters such as flow rates of the dosed substance and air, dosing nozzle outlet diameter, and conduit diameter on the flow rate and trajectory of the transported modifier. The findings highlight the importance of a minimum droplet diameter of 30 μm, preferably 50 μm, for proper delivery to the combustion chamber. This study not only identifies key differences between analyzed structures but also emphasizes the crucial role of these operational parameters in achieving optimal conditions for modifier transport.
Rocznik
Tom
Strony
art. no. e54
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, M. Sklodowska-Curie 5, 60-965 Poznan, Poland
- KMB Catalyst sp. z o.o., Pszczyńska 167C, 43-175 Wyry, Poland
autor
- KMB Catalyst sp. z o.o., Pszczyńska 167C, 43-175 Wyry, Poland
- Silesian University of Technology, Department of Automatic Control and Robotics, Akademicka 2A, 44-100 Gliwice, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, M. Sklodowska-Curie 5, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, M. Sklodowska-Curie 5, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, M. Sklodowska-Curie 5, 60-965 Poznan, Poland
Bibliografia
- 1. Agraniotis M., Bergins C., Stein-Cichoszewska M., Kakaras E., 2017. 5 – High-efficiency pulverized coal power generation using low-rank coals. In: Luo Z., Agraniotis M. (Eds.), Low-rank coals for power generation, fuel and chemical production. Woodhead Publishing, 95–124. DOI: 10.1016/B978-0-08-100895-9.00005-X.
- 2. Bielecki Z., 2023. Control in systems with a multiphase flow. PhD Thesis, Silesian University of Technology, Gliwice 2023.
- 3. Bielecki Z., Ochowiak M., Włodarczak S., Krupińska A., Matuszak M., Lewtak R., Dziuba J., Szajna E., Choiński D., Odziomek M., 2021. The analysis of the possibility of feeding a liquid catalyst to a coal dust channel. Energies, 14, 8521. DOI: 10.3390/en14248521.
- 4. Bielecki Z., Ochowiak M., Włodarczak S., Krupińska A., Matuszak M., Jagiełło K., Dziuba J., Szajna E., Choiński D., Odziomek M., Sosnowski T.R., 2022b. The optimal diameter of the droplets of a high-viscosity liquid containing solid state catalyst particles. Energies, 15, 3937. DOI: 10.3390/en15113937.
- 5. Bielecki Z., Szajna E., Ochowiak M., 2022a. Aerodynamic multi-phase reactor. European Patent Application.
- 6. Blondeau J., Kock R., Mertens J., Eley A.J., Holub J., 2016. Online monitoring of coal particle size and flow distribution in coal fired power plants: dynamic effects of a varying mill classifier speed. Appl. Therm. Eng., 98, 449–454. DOI: 10.1016/j.applthermaleng.2015.12.113.
- 7. Guo Y., Yang X., Li G., Yang J., Liu L., Chen L., Li B., 2021. Shear turbulence controllable synthesis of aggregated nano-particles using a swirling vortex flow reactor assisted by ultrasound irradiation. Chem. Eng. J., 405, 126914. DOI: 10.1016/j.cej.2020.126914.
- 8. Guziałowska-Tic J., Tic W.J., 2012. Modyfikatory stosowane w procesie spalania olejów opałowych i paliw stałych. Chemik, 66 (11), 1203–1210.
- 9. Hurskainen M., Vainikka P., 2016. 7 – Technology options for large-scale solid-fuel combustion, In: Oakey J. (Ed.), Fuel flexible energy generation. Woodhead Publishing, 177–199. DOI: 10.1016/B978-1-78242-378-2.00007-9.
- 10. Maranda A., Szala M., Szymańczyk L., Choiński D., Szajna E., Bielecki Z., 2016. Investigation of Raney catalyst. High-Energetic Materials, 8, 103–110.
- 11. Naterer G.F., 2002. Multiphase flow with impinging droplets and airstream interaction at a moving gas/solid interface. Int. J. Multi-phase Flow, 28, 451–477. DOI: 10.1016/S0301-9322(01)00076-3.
- 12. Ochowiak M., Bielecki Z., Bielecki M., Włodarczak S., Krupińska A., Matuszak M., Choiński D., Lewtak R., Pavlenko I., 2022. The D2-law of droplet evaporation when calculating the droplet evaporation process of liquid containing solid state catalyst particles. Energies, 15, 7642. DOI: 10.3390/en15207642.
- 13. Ochowiak M., Bielecki Z., Krupińska A., Matuszak M., Włodarczak S., Bielecki M., Choiński D., Smyła J., Jagiełło K., 2023. Pulverized coal-fired boilers: future directions of scientific research. Energies, 16, 935. DOI: 10.3390/en16020935
- 14. The concept of a new aerodynamic multiphase reactor with catalyst injection for a pulverized coal boiler Olszewski P., Świnder H., Klupa A., Ciszek K., 2012. Możliwość zagospodarowania wybranych odpadów z procesów czystych technologii węglowych. Research Reports Mining and Environment, 4, 123–136.
- 15. SimcenterTMFLOEFDTMSC Technical Reference, 2022. Software Version 2022.1, Siemens. SNP, 2022. Spray pattern and flow rate considerations for spray injection applications. Available at: https://www.spray-nozzle.co.uk/spray-nozzle-applications/injection/spray-pattern-and-flow-rate.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e704cf5-92dc-4480-9177-39a9b84d10eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.