PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Extremal properties of linear dynamic systems controlled by Dirac’s impulse

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the properties of linear dynamical systems described by linear differential equations, excited by the Dirac delta function. A differential equation of the form a<sub>n</sub> x<sup>(n)</sup> (t) + ∙∙∙ a<sub>1</sub> x’(t) + a<sub>0</sub> x(t) = b<sub>m</sub> u<sup(m)</sup> (t) + ∙∙∙ + b<sub>1</sub> u’(t) + b<sub>0</sub> u(t) is considered with a<sub>i</sub>, b<sub>j</sub> >0. In the paper we assume that the polynomials M<sub>n</sub>(s) = a<sub>n</sub>s<sup>n</sup> + ∙∙∙ + a<sub>1</sub>s + a<sub>0</sub> and L<sub>m</sub>(s) = b<sub>m</sub>s<sup>m</sup> + ∙∙∙ + b<sub>1</sub>s + b<sub>0</sub> partly interlace. The solution of the above equation is denoted by x(t, L<sub>m</sub>, M<sub>n</sub>). It is proved that the function x(t, L<sub>m</sub>, M<sub>n</sub>) is nonnegative for t ∊ (0, ∞) , and does not have more than one local extremum in the interval (0, ∞) (Theorems 1, 3 and 4). Besides, certain relationships are proved which occur between local extrema of the function x(t, L<sub>m</sub>, M<sub>n</sub>), depending on the degree of the polynomial M<sub>n</sub>(s) or L<sub>m</sub>(s) (Theorems 5 and 6).
Rocznik
Strony
75--81
Opis fizyczny
Bibliogr. 5 poz., wykr.
Twórcy
  • School of Banking and Management, ul. Armii Krajowej 4, 30-150 Cracow, Poland
  • Department of Automatics and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  • Department of Automatics and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • [1] Górecki, H. (2018). Optimization and Control of Dynamic Systems, Springer, Cham.
  • [2] Górecki, H. and Zaczyk, M. (2013). Design of systems with extremal dynamic properties, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 563–567.
  • [3] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
  • [4] Kaczorek, T. (2018). A new method for determination of positive realizations of linear continuous-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 66(5): 605–611.
  • [5] Osiowski, J. (1965). An Outline of Operator Calculus. Theory and Applications in Electrical Engineering, WNT, Warsaw, (in Polish).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e6bdd27-0e25-46c7-98b2-616bda451622
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.