Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r2 > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.
Wydawca
Rocznik
Tom
Strony
86--93
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Industrial Engineering, Tsinghua University, P.R.China
autor
- Department of Industrial Engineering, Tsinghua University, P.R.China
autor
- Department of Industrial Engineering, Tsinghua University, P.R.China
autor
- Department of Industrial Engineering, Tsinghua University, P.R.China
Bibliografia
- 1. Rohmert W. Problems in determining rest allowances Part 1: use of modern methods to evaluate stress and strain in static muscular work. Appl Ergon. 1973;4(2):91-95. doi: 10.1016/0003-6870(73)90082-3
- 2. Chaffin DB, Andersson GBJ, Martin BJ. Occupational biomechanics. 3rd ed. New York: Wiley-Interscience; 1999.
- 3. Nanthavanij S. Quantitative analysis of heart rate recovery profile during recovery from physical work. Int J Ind Ergon. 1992;9(4):329-342. doi: 10.1016/0169-8141(92)90065-8
- 4. Konz S. Work/rest: Part ii-the scientific basis (knowledge base) for the guide. Int J Ind Ergon. 1998;22(1-2):73-99. doi: 10.1016/S0169-8141(97)00069-3
- 5. Shin H, Kim J. Measurement of trunk muscle fatigue during dynamic lifting and lowering as recovery time changes. Int J Ind Ergon. 2007;37(6):545-551. doi: 10.1016/j.ergon.2007.03.006
- 6. Edwards R, Hill D, Jones D, Merton P. Fatigue of long duration in human skeletal muscle after exercise. J Physiol. 1977;272(3):769-778. doi: 10.1113/jphysiol.1977.sp012072
- 7. Wood D, Fisher D, Andres R. Minimizing fatigue during repetitive jobs: optimal work-rest schedules. Hum Factors. 1997;39(1):83-101. doi: 10.1518/001872097778940678
- 8. Duong B, Low M, Moseley A, Lee R, Herbert R. Time course of stress relaxation and recovery in human ankles. Clin Biomech. 2001;16(7):601-607. doi: 10.1016/S0268-0033(01)00043-2
- 9. Yassierli M, Iridiastadi H, Wojcik L. The influence of age on isometric endurance and fatigue is muscle dependent: a study of shoulder abduction and torso extension. Ergonomics. 2007;50(1):26-45. doi: 10.1080/00140130600967323
- 10. Milner N, Corlett E, O'Brien C. A model to predict recovery from maximal and submaximal isometric exercise. In: The ergonomics of working postures: models, methods and cases: the proceedings of the First International Occupational Ergonomics Symposium, Zadar, Yugoslavia, 15-17 April 1985. Boca Raton (FL): CRC Press; 1985. p. 126–136.
- 11. Rohmert W, Rutenfranz J. Erholung und pause. Praktische Arbeitsphysiologie [Recovery and pause. Practical physiology of work]. Stuttgart: G Thieme; 1983.
- 12. Rohmert W, Rutenfranz J. Erholung und pause. Praktische Arbeitsphysiologie [Recovery and pause. Practical physiology of work]. Stuttgart: G Thieme; 1983.
- 13. Westgaard R, Winkel J. Guidelines for occupational musculoskeletal load as a basis for intervention: a critical review. Appl Ergon. 1996;27(2):79-88. doi: 10.1016/0003-6870(95)00062-3
- 14. Carnahan B, Norman B, Redfern M. Incorporating physical demand criteria into assembly line balancing. IIE Trans. 2001;33(10):875-887.
- 15. Liu J, Brown R, Yue G. A dynamical model of muscle activation, fatigue, and recovery. Biophys J. 2002;82(5):2344-2359. doi: 10.1016/S0006-3495(02)75580-X
- 16. Zakaria D, Robertson J, Macdermid J, Hartford K, Koval J. Work-related Cumulative trauma disorders of the upper extremity: Navigating the epidemiologic literature. Am J Ind Med. 2002;42(3):258-269. doi: 10.1002/ajim.10100
- 17. Kennedy C, Amick III B, Dennerlein J, Brewer S, Catli S, Williams R, Serra C, Gerr F, Irvin E, Mahood Q. Systematic review of the role of occupational health and safety interventions in the prevention of upper extremity musculoskeletal symptoms, signs, disorders, injuries, claims and lost time. J Occup Rehabil. 2010;20(2):127-162. doi: 10.1007/s10926-009-9211-2
- 18. Fulco C, Rock M, Lammi F, Cymerman A, Butterfield G, Moore L, Braun B, Lewis S. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand. 1999;167(3):233-239. doi: 10.1046/j.1365-201x.1999.00613.x
- 19. Ma L, Chablat D, Bennis F, Zhang W, Hu B, Guillaume F. A novel approach for determining fatigue resistances of different muscle groups in static cases. Int J Ind Ergon. 2011;41(1):10-18. doi: 10.1016/j.ergon.2010.11.005
- 20. Short K, Sedlock D. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83(1):153-159.
- 21. Bol M, Pipetz A, Reese S. Finite element model for the simulation of skeletal muscle fatigue. Materialwiss Werkstofftech. 2009;40(1-2):5-12. doi: 10.1002/mawe.200800372
- 22. Xia T, Frey Law L. A theoretical approach for modeling peripheral muscle fatigue and recovery. J Biomech. 2008;41(14):3046-3052. doi: 10.1016/j.jbiomech.2008.07.013
- 23. Winter DA. Biomechanics and motor control of human movement. 4th ed. New York: Wiley; 2009.
- 24. El Ahrache K, Imbeau D. Comparison of rest allowance models for static muscular work. Int J Ind Ergon. 2009;39(1):73-80. doi: 10.1016/j.ergon.2008.10.012
- 25. Ma L, Chablat D, Bennis F, Zhang W. A new simple dynamic muscle fatigue model and its validation. Int J Ind Ergon. 2009;39(1):211-220. doi: 10.1016/j.ergon.2008.04.004
- 26. Rodríguez I, Boulic R, Meziat D. A model to assess fatigue at joint-level using the half-joint concept. In: Visualization and data analysis, proceedings of the SPIE, Santa Clara (CA). 2003; p. 21-27.
- 27. Ding J, Wexler AS, Binder-Macleod SA. A predictive model of fatigue in human skeletal muscles. J Appl Physiol. 2000;89(4):1322-1332.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e6b1656-26f4-4dff-bc4f-94acdfb1a762
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.