PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic emission monitoring of granite under bending and shear loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study bending and shear fracture experiments on healthy and adhesively repaired granite samples with concurrent acoustic emission (AE) monitoring are discussed. AE can characterize the difference between the fracture modes using simple features analysis based on the activity of the early loading. It is the first time that such a direct correspondence between the stress field and the results of a monitoring technique emerge for granite. This offers new insight in the material's behavior especially in relation to complicated geometries where the dominant stress mode is not known a priori.
Rocznik
Strony
313--324
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science and Engineering, University of Ioannina, Greece
  • Department of Materials Science and Engineering, University of Ioannina, Greece
  • Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Belgium
  • Department of Materials Science and Engineering, University of Ioannina, Greece
  • Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Belgium
Bibliografia
  • [1] M. Ohtsu, Recommendations of RILEM Technical Committee 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete: 3. Test method for classification of active cracks in concrete structures by acoustic emission, Materials and Structures 43 (9) (2010) 1187–1189.
  • [2] C.U. Grosse, M. Ohtsu, Acoustic Emission Testing, Springer, Heidelberg, 2008.
  • [3] S. Mindess, Acoustic emission methods, in: V.M. Malhotra, N. J. Carino (Eds.), CRC Handbook of Nondestructive Testing of Concrete, CRC, Boca Raton, FL, 2004.
  • [4] R. Vidya Sagar, B.K. Raghu Prasad, R.K. Singh, Kaiser effect observation in reinforced concrete structures and its use for damage assessment, Archives of Civil and Mechanical Engineering 15 (2015) 548–557.
  • [5] A. Carpinteri, M. Corrado, G. Lacidogna, Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies, Engineering Failure Analysis 33 (2013) 236–250.
  • [6] H. Elaqra, N. Godin, G. Peix, M. R'Mili, G. Fantozzi, Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: effects of the sand/cement ratio, Cement and Concrete Research 37 (2007) 703–713.
  • [7] D.A. Lockner, J.D. Byerlee, V. Kuksenko, A. Ponomarev, A. Sidorin, Quasi static fault growth and shear fracture energy in granite, Nature 350 (1991) 39–42.
  • [8] B. Goszczynska, G. Swit, W. Trampczynskin, A. Krampikowska, J. Tworzewska, P. Tworzewski, Experimental validation of concrete crack identification and location with acoustic emission method, Archives of Civil and Mechanical Engineering I2 (2012) 23–28.
  • [9] Y. Kawasaki, T. Wakuda, T. Kobarai, M. Ohtsu, Corrosion mechanisms in reinforced concrete by acoustic emission, Construction and Building Materials 48 (2013) 1240–1247.
  • [10] Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation, The Scientific World Journal (2013), http://dx.doi.org/10.1155/ 2013/424560, Article number 424560.
  • [11] L. Chen, C.P. Wang, J.F. Liu, Y.M. Liu, J. Liu, R. Su, J. Wang, A damage-mechanism-based creep model considering temperature effect in granite, Mechanics Research Communications 56 (2014) 76–82.
  • [12] E. Verstrynge, L. Schueremans, D. Van Gemert, M. Wevers, Monitoring and predicting masonry's creep failure with the acoustic emission technique, NDT&E International 42 (2009) 518–523.
  • [13] K. Ohno, M. Ohtsu, Crack classification in concrete based on acoustic emission, Construction and Building Materials 24 (12) (2010) 2339–2346.
  • [14] D.G. Aggelis, S. Verbruggen, E. Tsangouri, T. Tysmans, D. Van Hemelrijck, Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation, Construction and Building Materials 47 (2013) 1037–1045.
  • [15] C. Grosse, H. Reinhardt, T. Dahm, Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques, NDT&E International 30 (4) (1997) 223–230.
  • [16] A.C. Mpalaskas, I. Vasilakos, T.E. Matikas, H.K. Chai, D.G. Aggelis, Monitoring of the fracture mechanisms induced by pull-out and compression in concrete, Engineering Fracture Mechanics 128 (2014) 219–230.
  • [17] D.G. Aggelis, A.C. Mpalaskas, T.E. Matikas, Investigation of different fracture modes in cement-based materials by acoustic emission, Cement and Concrete Research 48 (2013) 1–8.
  • [18] D.G. Aggelis, A.C. Mpalaskas, T.E. Matikas, Acoustic signature of different fracture modes in marble and cementitious materials under flexural load, Mechanics Research Communications 47 (2013) 39–43.
  • [19] A. Moropoulou, K. Polikreti, V. Ruf, G. Deodatis, San Francisco Monastery, Quito, Equador: characterisation of building materials, damage assessment and conservation considerations, Journal of Cultural Heritage 4 (2003) 101–108.
  • [20] L. Chen, J.F. Liu, C.P. Wang, J. Liu, R. Su, J. Wang, Characterization of damage evolution in granite under compressive stress condition and its effect on permeability, International Journal of Rock Mechanics & Mining Sciences 71 (2014) 340–349.
  • [21] T. Ishida, Acoustic emission monitoring of hydraulic fracturing in laboratory and field, Construction and Building Materials 15 (2001) 283–295.
  • [22] C. Cerrillo, A. Jiménez, M. Rufo, J. Paniagua, F.T. Pachón, New contributions to granite characterization by ultrasonic testing, Ultrasonics 54 (2014) 156–167.
  • [23] D. Lockner, The role of acoustic emission in the study of rock fracture, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30 (7) (1993) 883–899.
  • [24] Neotex SA, ‘‘Technical data sheet,’’ http://www.neotex.gr/ frontoffice/portal.asp?cpage=NODE&cnode=122&clang=1 (accessed 2/2015).
  • [25] A. Chmel, I. Shcherbakov, A comparative acoustic emission study of compression and impact fracture in granite, International Journal of Rock Mechanics & Mining Sciences 64 (2013) 56–59.
  • [26] T. Shiotani, Y. Oshima, M. Goto, S. Momoki, Temporal and spatial evaluation of grout failure process with PC cable breakage by means of acoustic emission, Construction and Building Materials 48 (2013) 1286–1292.
  • [27] S. Shahidan, R. Pulin, N. Muhamad Bunnori, K.M. Holford, Damage classification in reinforced concrete beam by acoustic emission signal analysis, Construction and Building Materials 45 (2013) 78–86.
  • [28] T. Watanabe, S. Nishibata, C. Hashimoto, M. Ohtsu, Compressive failure in concrete of recycled aggregate by acoustic emission, Construction and Building Materials 21 (2007) 470–476.
  • [29] http://www.pacndt.com/index.aspx?go=products&focus= Software/noesis.htm.
  • [30] D. Polyzos, A. Papacharalampopoulos, T. Shiotani, D.G. Aggelis, Dependence of AE parameters on the propagation distance, Journal of Acoustic Emission 29 (2011) 57–67.
  • [31] L. Jian-po, L. Yuan-hui, X. Shi-da, X. Shuai, J. Chang-yu, Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission, Theoretical and Applied Fracture Mechanics 75 (2015) 151–159.
  • [32] D.C. Jansen, S.P. Shah, Effect of length on compressive strain softening of concrete, Journal of Engineering Mechanics 123 (1997) 25–35.
  • [33] D.E. Moore, D.A. Lockner, The role of microcracking in shear-fracture propagation in granite, Journal of Structural Geology 17 (1) (1995) 95–114.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e67a667-c77f-4e88-8779-aac26e57a900
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.