Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short Term Electricity Demand Forecasting of an Isolated Area using Two Different Approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Electricity demand forecasting of an off-grid area, where no previous load data is available, is an important prerequisite for power system expansion planning. Bangladesh is a small as well as densely populated country in South Asia with a large portion of the population living under poverty line. About 48.5% of the total population has access in grid electricity. Uninterruptable power supply is one of the most important parameter for future development which ends up with a decision of obvious expansion of present grid coverage. This paper represents an analysis to forecast the electricity demand of an isolated island in Bangladesh where past history of electrical load demand is not available. The analysis is based on the identification of factors on which electrical load growth of an area depends. The forecasting has been done through inverse matrix calculation and linear regression analysis method. It has been found that the demand data, calculated from two different approaches, are close enough which spans the reliability of the proposed method. This method can be applicable for short term load forecasting of any isolated area throughout the world.
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
  • Planning & Development Division (Design) Power Grid Company of Bangladesh (PGCB) Ltd., Dhaka-1000, Bangladesh
  • Electrical & Electronic Engineering Bangladesh University (BU), Dhaka-1207, Bangladesh
  • Electrical & Electronic Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka-1000, Bangladesh
  • [1] G. Gross, F. D. Galianan, Short-term load forecasting, in: Proceedings of the IEEE, Vol. 75, 1987, pp. 1558–1572.
  • [2] D. Park, M. Al-Sharkawi, R. Marks, A. Atlas, M. Damborg, Electric load forecasting using an artificial neural network, IEEE Transactions on Power Systems 6 (2) (1991) 442–449.
  • [3] S. Sachdeva, C. M. Verma, Load forecasting using fuzzy methods, in: Proceeding of Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, 2008, pp. 1–4.
  • [4] B. E. Psiloglou, C. Giannakopoulos, S. Majithia, M. Petrakis, Factors affecting electricity demand in athens, greece and london, uk: A comparative assessment, Energy 34 (11) (2009) 1855–1863.
  • [5] A. D. Papalxopoulos, T. C. Hiterbeg, A regression-based approach to short-term load forecasting, IEEE Transactions on Power Systems 5 (4) (1990) 1535–1547.
  • [6] S. I. Khan, A. Islam, Performance analysis of solar water heater, Smart Grid and Renewable Energy 2 (4) (2011) 396–398.
  • [7] P. Chiradeja, Benefit of distributed generation: A line loss reduction analysis, in: Transmission and Distribution Conference and Exhibition, Asia and Pacific, Bangkok, 2005, pp. 1–5.
  • [8] R. K. Jaganathan, T. K. Saha, Voltage stability analysis of grid connected embedded generators, in: Proceedings of the Australasian Universities Power Engineering Conference–AUPEC 2004, Brisbane, 2004.
  • [9] J. O. Jaber, M. S. Mohsen, S. D. Probert, M. Alees, Future electricity demands and green house-gas emissions in jordan, Applied Energy 69 (1) (2001) 1–18.
  • [10] D. C. Sansom, T. K. Saha, Energy constrained generation dispatch based on price forecasts including expected values and risk, in: IEEE Power Engineering Society General Meeting, Denver, Colorado, USA, 2004.
  • [11] M. H. Albadi, E. F. El-Saadany, A summary of demand response in electricity markets, Electric Power Systems Research 78 (11) (2008) 1989–1996.
  • [12] P. Cappers, C. Goldman, D. Kathan, Demand response in u.s. electricity markets: empirical evidence, Energy 35 (4) (2010) 1526–1535.
  • [13] H. Morais, P. K. P. Faria, Z. A. Vale, H. M. Khodr, Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming, Renewable Energy 35 (1) (2010) 151–156.
  • [14] A. McDonald, L. Schrattenholzer, Learning rates for energy technologies, Energy Policy 29 (4) (2001) 255–261.
  • [15] A. P. Leite, C. L. T. Borges, Probability wind farms generation model for reliability studies applied to Brazilian sites, IEEE Transactions on Power Systems 21 (4) (2006) 1493–1501.
  • [16] Z. M. Hasib, J. Hossain, S. Biswas, A. Islam, Bio-diesel from mustard oil: A renewable alternative fuel for small diesel engines, Modern Mechanical Engineering 1 (2) (2011) 77–83.
  • [17] G. T. Heinemann, D. A. Nordman, E. C. Plant, The relationship between summer weather and summer loads, IEEE Transactions on Power Apparatus and Systems PAS-85 (11) (1966) 1144–1154.
  • [18] A. N. Celik, On the distributional parameters used in assessment of the suitability of wind speed probability density functions, Energy Conversion and Management 45 (11) (2004) 1735–1747.
  • [19] K. L. Wong, M. F. Rahmat, Feasibility study of leakage current shunting method based on ladder network model, IEEE Transactions on Power Delivery 25 (2).
  • [20] M. Momani, Factors affecting electricity demand in jordan, Energy and Power Engineering 5 (1) (2013) 50–58.
  • [21] C. Cartalis, A. Synodinou, M. Proedrou, A. Tsangrassoulis, M. Santamouris, Modifications in energy demand in urban areas as a result of climate changes: An assessment for the southeast mediterranean region, Energy Conversion and Management 42 (14) (2001) 1647–1656.
  • [22] M. Bessec, J. Fouquau, The non-linear link between electricity consumption and temperature in europe: A threshold panel approach, Energy Economics 30 (5) (2008) 2705–2721.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.