PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Hydrophytes for Additional Treatmnet of Municipal Sewage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At the current stage of discharge and treatment of municipal sewage and other types of wastewater in the territory of Ukraine, traditional technologies of biological treatment in aero-tanks by the process of aerobic oxidation involving active silt characterized by low efficiency are largely used. It was established that biological treatment and additional treatment of sewage involving hydrophytes are efficient. The research on wastewater quality and the efficiency of sewage treatment was conducted in three phases: Phase 1 – “the quality before treatment”, Phase 2 – “the quality after mechanical-biological treatment” at the existing municipal treatment plants, Phase 3 – “the quality after additional treatment by hydrophytes”. In order to determine the efficiency of using hydrophytes additional treatment, Eichhornia crassipes (water hyacinth) and the perennial aquatic plant Lemna minor were planted in one treatment pond. The results of the experiment made it possible to determine high efficiency of using hydrophytes for additional sewage treatment. In particular, the efficiency of additional treatment in the treatment ponds removing the residue of suspended pollutants for 40 days was 32%, toxic salts – 13.0–23.0%, oil products – 30.0%, biogenic substances – 68.5–83.3%. It caused a drop in the values of chemical and biological oxygen demand for 5 days by 89.6% and 61.2%, respectively. The efficiency of sewage treatment removing toxic salts and oil products reached 97.7%, whereas in the case of mineral and organic pollutants – up to 99%. That contributed to a considerable increase in the wastewater quality by the criteria for fisheries. In particular, high nutritional value of Eichhornia crassipes and Lemna minor allowed obtaining 12.5 tons of hydrophyte wet mass that can be used as green manure, feeds for farm animals, poultry and fish.
Rocznik
Strony
54--63
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Kherson State Agrarian and Economic University, Stritens’ka Str. 23, 73006 Kherson, Ukraine
  • Kherson State Agrarian and Economic University, Stritens’ka Str. 23, 73006 Kherson, Ukraine
  • Kherson State Agrarian and Economic University, Stritens’ka Str. 23, 73006 Kherson, Ukraine
  • Kherson State Maritime Academy, Ushakov Ave, 20, 73006 Kherson, Ukraine
  • Kherson State Agrarian and Economic University, Stritens’ka Str. 23, 73006 Kherson, Ukraine
Bibliografia
  • 1. Beckers L.-M., Busch W., Krauss M., Schulze T., Brack W. 2018. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system. Water Research, 135, 122–133. https://doi.org/10.1016/j.watres.2018.02.002
  • 2. Becouze-Lareure C., Thiebaud L., Bazin C., Namour P., Breil P., Perrodin Y. 2016. Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer overflow discharges. Science of the Total Environment, 539, 503–514. https://doi.org/10.1016/j.scitotenv.2015.08.128
  • 3. Buryak Z., Lisetskii F., Gusarov A., Narozhnyaya A., Kitov M. 2022. Basin-Scale Approach to Integration of Agroand Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability, 14(2), 927. https://doi.org/10.3390/su14020927
  • 4. Carbiner R., Tremolieres M., Mercier S., Ortscheit A. 1990. Aquatic macrophyte communities as bioindikators of eutrophication in calcareous oligosaprobe stream waters. Vegetatio, 86, 71–88. https://doi.org/10.1007/BF00045135
  • 5. Deffontis S., Breton A., Vialle C., Montréjaud-Vignoles M., Vignoles C., Sablayrolles C. 2013. Impact of dry weather discharges on annual pollution from a separate storm sewer in Toulouse, France. Science of the Total Environment, 452–453, 394–403. https://doi.org/10.1016/j.scitotenv.2013.03.014
  • 6. Domaratskiy Y., Kozlova O., Kaplina A. 2020. Economic Efficiency of Applying Environmentally Friendly Fertilizers in Production Technologies in the South of Ukraine. Indian Journal of Ecology, 47 (3), 624–629.
  • 7. Dudiak N., Pichura V., Potravka L., Stratichuk N. 2021. Environmental and economic effects of water and deflation destruction of steppe soil of Ukraine. Journal of Water and Land Development, 50(6–9), 11–27.
  • 8. Dudiak N.V., Pichura V.I., Potravka L.A., Stroganov A.A. 2020. Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecological Engineering, 21(2), 166–177. https://doi.org/10.12911/22998993/116321
  • 9. Ecological assessment of surface water quality of land and estuaries of Ukraine 1994. Methodology. Kyiv, Guiding Normative Document, 211.1.4.010-94, 37. (in Ukrainian)
  • 10. Eidab E.M., Shaltoutc K.H., Almuqrind A.H., Alorainid D.A., Khedheref K.M., Taherag M.A., Alfarhanh A.H., Picói Y., Barcelohj D. 2021. Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Science of The Total Environment, 782, 146887. https://doi.org/10.1016/j.scitotenv.2021.146887
  • 11. Imron M.F., Ananta A.R., Ramadhani I.S., Kurniawan S.B., Abdullah S.R.S. 2021. Potential of Lemna minor for removal of methylene blue in aqueous solution: Kinetics, adsorption mechanism, and degradation pathway. Environmental Technology & Innovation, 24, 101921. https://doi.org/10.1016/j.eti.2021.101921
  • 12. Lisetskii F., Polshina M., Pichura V., Marinina O.C. 2017. Climatic factor in long-term development of forest ecosystems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(32), 765–774. https://doi.org/10.5593/sgem2017/32
  • 13. Lisetskii F.N., Pichura V.I., Pavlyuk Y.V., Marinina O.A. 2015. Comparative assessment of methods for forecasting river runoff with different conditions of organization. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 56–60.
  • 14. Makarova T., Domaratskiy Ye., Hapich G., Kozlova O. (2021) Agromeliorative efficiency of phosphogypsum application on irrigation saline soils in the Northern Steppe of Ukraine. Indian Journal of Ecology, 48(3), 789–795.
  • 15. Maximum permissible values of water quality indicators for fishery reservoirs 1990. General list of maximum permissible concentrations and approximate permissible levels of harmful substances for water in fishery reservoirs. Kyiv, Ministry of Fisheries of the USSR, 12-04-11, 45. (in Ukrainian)
  • 16. Mònica E., Matamoros C.V. 2022. Linking plantroot exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. Chemosphere, 287 (1), 132056. https://doi.org/10.1016/j.chemosphere.2021.132056
  • 17. Pichura V., Potravka L. 2019. Typization of the Dnipro river basin territory according the degree of agrogenic transformation of landscape territorial structures. Scientific Horizons, 9, 45–56. https://doi.org/10.33249/2663-2144-2019-82-9-45-56
  • 18. Pichura V., Potravka L., Dudiak N., Vdovenko N. 2021. Space-Time Modeling of Climate Change and Bioclimatic Potential of Steppe Soil. Indian Journal of Ecology, 48(3), 671–680.
  • 19. Pichura V., Potravka L., Skok S., Vdovenko N. 2020. Causal Regularities of Effect of Urban Systems on Condition of Hydro Ecosystem of Dnieper River. Indian Journal of Ecology, 47(2), 273–280.
  • 20. Pichura V.I. 2020. Basin organization of nature use on the catchment area of the Dnieper transboundary river. Kherson, OLDI-PLUS, 380. (in Ukrainian)
  • 21. Pichura V.I., Domaratsky Y.A., Yaremko Y.I., Volochnyuk Y.G., Rybak V.V. 2017. Strategic Ecological Assessment of the State of the Transboundary Catchment Basin of the Dnieper River Under Extensive Agricultural Load. Indian Journal of Ecology, 44(3), 442–450.
  • 22. Pichura V.I., Malchykova D.S., Ukrainskij P.A., Shakhman I.A., Bystriantseva A.N. 2018. Anthropogenic Transformation of Hydrological Regime of The Dnieper River. Indian Journal of Ecology, 45(3), 445–453.
  • 23. Pichura V.I., Potravka L.A., Skrypchuk P.M., Stratichuk N.V. 2020. Anthropogenic and climatic causality of changes in the hydrological regime of the Dnieper river. Journal of Ecological Engineering, 21(4), 1–10. https://doi.org/10.12911/22998993/119521
  • 24. Sheludchenko B.A. 2001. Engineering ecology. Textbook part II Hydrosphere. Zhytomyr, Volyn State Agrarian University, 220. (in Ukrainian)
  • 25. Wangb F., Gaoa J., Zhaia W., Cuia J., Huaa Y., Zhoua Z., Liua D., Wanga P., Zhangc H. 2021. Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and Environmental Safety, 219, 112236. https://doi.org/10.1016/j.ecoenv.2021.112236
  • 26. Zimmles Y., Kirzhner F., Malkovskaja A. 2006. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81, 420–428. https://doi.org/10.1016/j.jenvman.2005.11.014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e5b79f9-5dae-4ac3-9a00-a346416bdec1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.