PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Extended state observer based robust feedback linearization control applied to an industrial CSTR

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the chemical and petrochemical industry, the Continuous Stirred Tank Reactors (CSTR) are, without doubt, one of the most popular processes. From a control point of view, the mathematical model describing the temporal evolution of the CSTR has a strongly nonlinear cross-coupled character. Moreover, modeling errors such as external disturbances, neglected dynamics, and parameter variations or uncertainties make its control task a very difficult challenge. Even though this problem has been the subject of a wide number of control strategies, this article attempts to propose a viable, robust, nonlinear decoupling control scheme. The idea behind the proposed approach lies in the design of two nested control loops. The inner loop is responsible for the compensation of the nominal model nonlinear cross-coupled terms via static nonlinear feedback; whereas the outer loop, designed around an Extended State Observer (ESO) of which the additional state gathers the global effect of modeling errors, is charged to instantaneously estimate, and then to compensate the ESO extended state. This way, the CSTR complex dynamics are reduced to a series of decoupled linear subsystems easily controllable using a simple Proportional-Integral (PI) linear control to ensure the robust pursuit of reference signals respecting the desired performance. The presented control validation was performed numerically by an objective comparison to a classical PID controller. The obtained results clearly show the viability and the effectiveness of the proposed control strategy for dealing with such nonlinear, strongly cross-coupled plants subject to a wide range of disturbances despite the precision of their described mathematical model.
Słowa kluczowe
Twórcy
  • Department of Mechanical Engineering, University of 20 August 1955, Skikda, 21000, Algeria
Bibliografia
  • [1] D. Zhao, Q. Zhu, and J. Dubbeldam. “Terminal sliding mode control for continuous stirred tank reactor,” Chemical Engineering Research and Design, vol. 94, pp. 266-274, Feb. 2015, doi: 10.1016/j.cherd.2014.08.005.
  • [2] S. Alshamali and M. Zribi. “Backstepping control design for a continuous-stirred tank,” International Journal of Innovative Computing, Information and Control, vol. 8, pp. 7747-7760, Nov.2012.
  • [3] Nasser Mohamed Ramli and Mohamad Syafiq Mohamad. “Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic”, Jan. 2017, doi: 10.5281/zenodo.1128853.
  • [4] S. Li, X. J. Zong, and Y. Hu. “Model Predictive Control of Continuous Stirred-Tank Reactor,” Advanced Materials Research, vol. 760-762, pp. 1000-1003, 2013, doi: 10.4028/www.scientific.net/AMR.760-762.1000.
  • [5] R. Upadhyay and R. Singla. “Analysis of CSTR Temperature Control with Adaptive and PID Controller (A Comparative Study),” International Journal of Engineering and Technology, vol. 2, pp. 453-458, Jan. 2010, doi: 10.7763/IJET.2010.V2.164.
  • [6] M. Saad, A. Albagul, and D. Obaid. “Modeling and Control Design of Continuous Stirred Tank Reactor System,” Jan. 2013.
  • [7] A. Singh and V. Sharma. “Concentration control of CSTR through fractional order PID controller by using soft techniques,” in 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Jul. 2013, pp. 1-6. doi: 10.1109/ICC-CNT.2013.6726501.
  • [8] N. Minorsky.. “Directional Stability of Automatically Steered Bodies,” Journal of the American Society for Naval Engineers, vol. 34, no. 2, pp. 280-309, 1922, doi: 10.1111/j.1559-3584.1922.tb04958.x.
  • [9] Z. Gao. “Active disturbance rejection control: a paradigm shift in feedback control system design,” in 2006 American Control Conference, Jun. 2006, p. 7. doi: 10.1109/ACC.2006.1656579.
  • [10] J. Han. “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009, doi: 10.1109/TIE.2008.2011621.
  • [11] C. Kravaris and C.-B. Chung. “Nonlinear State Feedback Synthesis by Global Input/Output Linearization,” in 1986 American Control Conference, Jun. 1986, pp. 997-1005. doi: 10.23919/ACC.1986.4789080.
  • [12] M. Hajaya and T. Shaqarin. “Control of a Benchmark CSTR Using Feedback Linearization,” JORDANIAN JOURNAL OF ENGINEERING AND CHEMICAL INDUSTRIES (JJECI), vol. 2, pp. 67-75, Oct. 2019, doi: 10.48103/jjeci292019.
  • [13] U. Kumar, V. Sharma, O. P. Rahi, and V. Kumar. “MPC-Based Temperature Control of CSTR Process and Its Comparison with PID,” in Advances in Electrical and Computer Technologies, T. Sengodan, M. Murugappan, and S. Misra, Eds., in Lecture Notes in Electrical Engineering. Singapore: Springer, 2020, pp. 1109-1115. doi: 10.1007/978-981-15-5558-9_94.
  • [14] A. M. Deulkar, A. B. Patil. “Temperature control of continuous stirred tank reactor using model predictive controller,”Proceedings of IT Research International Conference, Kolhapur, India, 2015, ISBN: 978-93-85465-40-6.
  • [15] J. Pekaø and V. Havlena. “Control of CSTR using model predictive controller based on mixture distribution,” IFAC Proceedings Volumes, vol. 37, no. 13, pp. 793-798, Sep. 2004, doi: 10.1016/S1474-6670(17)31322-8.
  • [16] F. Wu. “LMI-based robust model predictive control and its application to an industrial CSTR problem,” Journal of Process Control, vol. 11, no. 6, pp. 649-659, Dec. 2001, doi: 10.1016/S0959-1524(00)00052-4.
  • [17] H. Chen, H. Kremling, and F. Allgöwer. “Nonlinear Predictive Control of a Benchmark CSTR,” Proceedings of the 3rd European Control Conference, Rome-Italy., pp. 3247-3252, Jan. 1995.
  • [18] P. B. Sistu and B. W. Bequette. “Nonlinear predictive control of uncertain processes: Application to a CSTR,” AIChE Journal, vol. 37, no. 11, pp. 1711-1723, 1991, doi: 10.1002/aic.690371114.
  • [19] A. Krishnan, B. V. Patil, P. S. V. Nataraj, J. Maciejowski, and K. V. Ling. “Model predictive control of a CSTR: A comparative study among linear and nonlinear model approaches,” in 2017 Indian Control Conference (ICC), Jan. 2017, pp. 182-187. doi: 10.1109/INDIANCC.2017.7846472.
  • [20] D. Gao. “Feedback Linearization Optimal Control Approach for Bilinear Systems in CSTR Chemical Reactor,” Intelligent Control and Automation, vol. 03, pp. 274-277, Jan. 2012, doi: 10.4236/ica.2012.33031.
  • [21] K. B. Pathak, A. Markana, and N. Parikh. “Optimal Control of CSTR,” Nirma University Journal of Engineering and Technology, 2000, Available: https://www.semanticscholar.org/paper/Optimal-Control-of-CSTR-Pathak-Markana/f4a41e3ef3b742141cbb58bb2ced4906a056f024.
  • [22] P. R. Meghna, V. Saranya, and B. J. Pandian. “Design of Linear-Quadratic-Regulator for a CSTR process,” IOP Conf. Ser.: Mater. Sci. Eng.,vol. 263, no. 5, p. 052013, Nov. 2017, doi: 10.1088/1757-899X/263/5/052013.
  • [23] D.-X. Gao, H. Liu, and J. Cheng. “Optimal output tracking control for chemical process of non-isothermal CSTR,” in 2016 Chinese Control and Decision Conference (CCDC), May 2016, pp. 4588-4592. doi: 10.1109/CCDC.2016.7531811.
  • [24] R. Upadhyay and R. Singla. “Analysis of CSTR Temperature Control with Adaptive and PID Controller (A Comparative Study),” International Journal of Engineering and Technology, vol. 2, pp. 453-458, Jan. 2010, doi: 10.7763/IJET.2010.V2.164.
  • [25] K.-U. Klatt and S. Engell. “Gain-scheduling trajectory control of a continuous stirred tank reactor,”Computers & Chemical Engineering, vol. 22, no. 4, pp. 491-502, Jan. 1998, doi: 10.1016/S0098-1354(97)00261-5.
  • [26] R. B. Gopaluni, I. Mizumoto, and S. L. Shah. “A Robust Nonlinear Adaptive Backstepping Cotroller for a CSTR,” Ind. Eng. Chem. Res., vol. 42, no. 20, pp. 4628-4644, Oct. 2003, doi: 10.1021/ie020412b.
  • [27] D. Stavrov, G. Nadzinski, S. Deskovski, and M. Stankovski. “Quadratic Model-Based Dynamically Updated PID Control of CSTR System with Varying Parameters,” Algorithms, vol. 14, no. 2, Art. no. 2, Feb. 2021, doi: 10.3390/a14020031.
  • [28] M. C. Colantonio, A. C. Desages, J. A. Romagnoli, and A. Palazoglu. “Nonlinear Control of a CSTR: Disturbance Rejection Using Sliding Mode Control,”Ind. Eng. Chem. Res., vol. 34, no. 7, pp. 2383-2392, Jul. 1995, doi: 10.1021/ie00046a022.
  • [29] M. Luning, Y. Xiao, Z. Dongya, and S. K. Spurgeon. “Disturbance observer based sliding mode control for a continuous stirred tank reactor (CSTR),” in 2017 36th Chinese Control Conference (CCC), Jul. 2017, pp. 3748-3753. doi:10.23919/ChiCC.2017.8027943.
  • [30] J. Feng, L. Ma, D. Zhao, X. Yan, and S. K. Spurgeon. “Output Feedback Sliding Mode Control for Continuous Stirred Tank Reactors,” in 2019 12th Asian Control Conference (ASCC), Jun. 2019, pp. 1443-1448. Available: https://ieeexplore.ieee.org/abstract/document/8765099.
  • [31] W. García-Gabín, J. E. Normey-Rico, and Eduardo. F. Camacho. “Sliding Mode Predictive Control of a Delayed CSTR,” IFAC Proceedings Volumes, vol. 39, no. 10, pp. 246-251, Jan. 2006, doi:10.3182/20060710-3-IT-4901.00041.
  • [32] A. Sinha and R. K. Mishra. “Control of a non-linear continuous stirred tank reactor via event triggered sliding modes,” Chemical Engineering Science, vol. 187, pp. 52-59, Sep. 2018, doi: 10.1016/j.ces.2018.04.057.
  • [33] D. Li, D. Wang, and Y. Gao. “Adaptive Neural Control and Modeling for Continuous Stirred Tank Reactor with Delays and Full State Constraints,” Complexity, vol. 2021, p. e9948044, Oct. 2021, doi: 10.1155/2021/9948044.
  • [34] O. Alshammari, M. N. Mahyuddin, and H. Jerbi. “A Neural Network-Based Adaptive Backstepping Control Law With Covariance Resetting for Asymptotic Output Tracking of a CSTR Plant,” IEEE Access, vol. 8, pp. 29755-29766, 2020, doi: 10.1109/ACCESS.2020.2972621.
  • [35] O. Alshammari, M. N. Mahyuddin, and H. Jerbi.“An Advanced PID Based Control Technique With Adaptive Parameter Scheduling for A Nonlinear CSTR Plant,” IEEE Access, vol. 7, pp. 158085-158094, 2019, doi: 10.1109/ACCESS.2019.2948019.
  • [36] A. Soukkou, A. Khellaf, S. Leulmi, and K.Boudeghdegh. “Optimal control of a CSTR process,” Braz. J. Chem. Eng., vol. 25, pp. 799-812, Dec. 2008, doi: 10.1590/S0104-66322008000400017.
  • [37] J. Han. “Auto disturbances rejection controller and its applications,” Control Decis., vol. 13, no. 1,pp. 19-33, 1998.
  • [38] Z. Gao, Y. Huang, and J. Han. “An alternative paradigm for control system design,” in Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), Dec. 2001, pp. 4578-4585 vol.5. doi: 10.1109/CDC.2001.980926.
  • [39] Y. Huang and J. Han. “Analysis and design for the second order nonlinear continuous extended states observer,” Chin.Sci.Bull., vol. 45, no. 21, pp. 1938-1944, Nov. 2000, doi: 10.1007/BF02909682.
  • [40] D. Yoo, S. S.-T. Yau, and Z. Gao. “On convergence of the linear extended state observer,” in 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Oct.2006, pp. 1645-1650. doi: 10.1109/CACSD-CCA-ISIC.2006.4776888.
  • [41] X. Yang and Y. Huang. “Capabilities of extended state observer for estimating uncertainties,” in 2009 American Control Conference, Jun. 2009, pp. 3700-3705. doi: 10.1109/ACC.2009.5160642.
  • [42] B.-Z. Guo and Z. Zhao. “On the convergence of an extended state observer for nonlinear systems with uncertainty,” Systems & Control Letters, vol. 60, no. 6, pp. 420-430, Jun. 2011, doi: 10.1016/j.sysconle.2011.03.008.
  • [43] H. Feng and B.-Z. Guo. “Active disturbance rejection control: Old and new results,” Annual Reviews in Control, vol. 44, pp. 238-248, Jan. 2017, doi: 10.1016/j.arcontrol.2017.05.003.
  • [44] Z.-H. Wu and B.-Z. Guo. “On convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems,” International Journal of Control, vol. 92, no. 5, pp. 1103-1116, May 2019, doi: 10.1080/00207179.2017.1382720.
  • [45] Y. Huang, Z. W. Luo, M. Svinin, T. Odashima, and S. Hosoe. “Extended state observer based technique for control of robot systems,” in Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527), Jun. 2002, pp. 2807-2811 vol.4. doi: 10.1109/WCIC A.2002.1020036.
  • [46] Q. Zheng and Z. Gao. “On practical applications of active disturbance rejection control,” in Proceedings of the 29th Chinese Control Conference, Jul. 2010, pp. 6095-6100. Available: https://ieeexplore.ieee.org/document/5572922.
  • [47] Q. Zheng, L. Q. Gao, and Z. Gao. “On Validation of Extended State Observer Through Analysis and Experimentation,” Journal of Dynamic Systems,Measurement, and Control, vol. 134, no. 024505, Jan. 2012, doi: 10.1115/1.4005364.
  • [48] Q. Zheng and Z. Gao. “Active disturbance rejection control: some recent experimental and industrial case studies,” Control Theory Technol., vol. 16, no. 4, pp. 301-313, Nov. 2018, doi: 10.1007/s11768-018-8142-x.
  • [49] S. E. Talole. “Active disturbance rejection control: Applications in aerospace,” Control Theory Technol., vol. 16, no. 4, pp. 314-323, Nov. 2018, doi: 10.1007/s11768-018-8114-1.
  • [50] E. F. Camacho and C. Bordons, Model Predictive control. in Advanced Textbooks in Control and Signal Processing. London: Springer, 2007. doi: 10.1007/978-0-85729-398-5.
  • [51] A. Isidori, Nonlinear Control Systems. in Communications and Control Engineering. London: Springer, 1995. doi: 10.1007/978-1-84628-615-5.
  • [52] Z. Gao. “Scaling and bandwidth-parameterization based controller tuning,” in Proceedings of the 2003 American Control Conference, 2003., Jun. 2003, pp. 4989-4996. doi: 10.1109/ACC.2003. 1242516.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e595b58-3e17-40e0-a64b-34290d1f77e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.