Identyfikatory
Warianty tytułu
Diagnostyka uszkodzeń systemu złożonego oparta na dynamicznych sieciach dowodowych oraz wieloatrybutowej metodzie podejmowania decyzji z wykorzystaniem liczb interwałowych
Języki publikacji
Abstrakty
The complexity of modern system structures and failure mechanisms makes it very difficult to locate the system fault. It has characteristics of dynamics of failure, diversity of distribution and epistemic uncertainties, which increase the challenges in the fault diagnosis significantly. This paper presents a fault diagnosis framework for complex systems within which the failure rates of components are expressed in interval numbers. Specifically, it uses a dynamic fault tree (DFT) to model the dynamic fault behaviors and deals with the epistemic uncertainties using Dempster-Shafer (D-S) theory and interval numbers. Furthermore, a solution is proposed to map a DFT into a dynamic evidential network (DEN) to calculate the reliability parameters. Additionally, diagnostic importance factor (DIF), Birnbaum importance measure (BIM) and heuristic information values (HIV) are taken into account comprehensively in order to obtain the best fault search scheme using an improved VIKOR algorithm. Finally, an illustrative example is given to demonstrate the efficiency of this method.
Złożoność nowoczesnych struktur systemowych oraz mechanizmów uszkodzeń powoduje trudności w lokalizacji uszkodzeń systemu. Systemy złożone charakteryzują się cechami, takimi jak dynamika uszkodzeń, różnorodność rozkładów oraz niepewność epistemiczna, które czynią wyzwania dotyczące diagnostyki uszkodzeń znacznie trudniejszymi. W niniejszym artykule przedstawiono metodę diagnozowania uszkodzeń systemów złożonych, w której intensywność uszkodzeń poszczególnych składników wyraża się za pomocą liczb przedziałowych. W szczególności, podejście to wykorzystuje dynamiczne drzewo błędów (DFT) do modelowania dynamicznych zachowań związanych z uszkodzeniami oraz rozwiązuje problem niepewności epistemicznej przy użyciu teorii Dempstera-Shafera (DS) oraz liczb przedziałowych. W celu obliczenia parametrów niezawodności, zaproponowano rozwiązanie polegające na odwzorowaniu DFT w dynamiczną sieć dowodową (DEN). Dodatkowo, w sposób kompleksowy wykorzystano czynnik ważności diagnostycznej (DIF), miarę ważności Birnbauma (BIM) oraz wartości informacji heurystycznej (HIV), aby przy użyciu udoskonalonego algorytmu VIKOR uzyskać najlepszy system wyszukiwania błędów. Skuteczność omawianej metody zilustrowano na podstawie przykładu.
Czasopismo
Rocznik
Tom
Strony
580--589
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- School of Information Engineering Nanchang University Xuefu Rd., 999 Jiangxi, China
autor
- School of Information Engineering Nanchang University Xuefu Rd., 999 Jiangxi, China
autor
- School of Information Engineering Nanchang University Xuefu Rd., 999 Jiangxi, China
Bibliografia
- 1. Assaf T and Dugan J.B. Design for diagnosis using a diagnostic evaluation measure. Instrumentation & Measurement Magazine 2006; 9(4): 37-43, https://doi.org/10.1109/MIM.2006.1664040.
- 2. Chiacchio F, Cacioppo M, D'Urso D, et al. A Weibull-based compositional approach for hierarchical dynamic fault trees. Reliability Engineering & System Safety 2013; 109: 45-52, https://doi.org/10.1016/j.ress.2012.07.005.
- 3. Chiremsel Z, Said R N, Chiremsel R. Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network. Journal of failure analysis and prevention 2016; 16(5): 747-760, https://doi.org/10.1007/s11668-016-0140-z.
- 4. Dempster A P. Upper and Lower Probabilities Induced by a Multi-Valued Mapping. Annals of Mathematical Statistics 1967; 38(2): 325-339, https://doi.org/10.1214/aoms/1177698950.
- 5. Duan Rongxing, Zhou Huilin. Diagnosis strategy for micro-computer controlled straight electro-pneumatic braking system using fuzzy set and dynamic fault tree. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16 (2): 217–223.
- 6. Dugan J B, Bavuso S J, Boyd M A. Dynamic fault-tree models for fault-tolerant computer systems. IEEE Transactions on reliability 1992; 41(3): 363-377, https://doi.org/10.1109/24.159800.
- 7. Ge D, Lin M, Yang Y, et al. Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams. Reliability Engineering & System Safety 2015; 142: 289-299, https://doi.org/10.1016/j.ress.2015.06.001.
- 8. Kabir S, Walker M, Papadopoulos Y, et al. Fuzzy temporal fault tree analysis of dynamic systems. International Journal of Approximate Reasoning 2016; 77: 20-37, https://doi.org/10.1016/j.ijar.2016.05.006.
- 9. Khakzad N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliability Engineering & System Safety 2015; 138: 263-272, https://doi.org/10.1016/j.ress.2015.02.007.
- 10. Kohlas J, Monney P A. A mathematical theory of hints: an approach to the Dempster-Shafer theory of evidence. Springer Science & Business Media, 2013.
- 11. Lee J, Lee J S. Heuristic search for scheduling flexible manufacturing systems using lower bound reachability matrix. Computers & Industrial Engineering 2010; 59(4): 799-806, https://doi.org/10.1016/j.cie.2010.08.006.
- 12. Lisnianski A. Extended block diagram method for a multi-state system reliability assessment. Reliability Engineering & System Safety 2007; 92(12): 1601-1607 ,https://doi.org/10.1016/j.ress.2006.09.013.
- 13. Li Y F, Huang H Z, Liu Y., et al. A new fault tree analysis method: Fuzzy dynamic fault tree analysis. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(3): 208-214.
- 14. Li Y F, Mi J, Liu Y. et al. Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2015; 229(6): 530-541, https://doi. org/10.1177/1748006X15588446.
- 15. Liu H C, You J X, You X Y, et al. A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Applied Soft Computing 2015; 28: 579-588, https://doi.org/10.1016/j.asoc.2014.11.036.
- 16. Mahmood Y A, Ahmadi A, Verma A K, et al. Fuzzy fault tree analysis: A review of concept and application. International Journal of System Assurance Engineering and Management 2013; 4(1): 19-32, https://doi.org/10.1007/s13198-013-0145-x.
- 17. Merle G, Roussel J M, Lesage J J, et al. Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events. IEEE Transactions on Reliability 2010; 59(1): 250-261, https://doi.org/10.1109/TR.2009.2035793.
- 18. Mhalla A, Collart Dutilleul S, Craye E. Estimation of failure probability of milk manufacturing unit by fuzzy fault tree analysis, Journal of Intelligent and Fuzzy Systems 2014; 26(2): 741-750.
- 19. Mi J, Li Y F, Yang Y J, et al. Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliability Engineering & System Safety 2016; 152: 1-15, https://doi.org/10.1016/j.ress.2016.02.003.
- 20. Rahman F A, Varuttamaseni A, Kintner-Meyer M, et al. Application of fault tree analysis for customer reliability assessment of a distribution power system. Reliability Engineering & System Safety 2013; 111: 76-85, https://doi.org/10.1016/j.ress.2012.10.011.
- 21. Sallak M, Schon W, Aguirre F. Extended component importance measures considering aleatory and epistemic uncertainties. IEEE Transactions on Reliability 2013; 62(1): 49-65, https://doi.org/10.1109/TR.2013.2240888.
- 22. Shafer G. A mathematical theory of evidence. Princeton: Princeton University Press, 1976.
- 23. Shrestha A, Xing L. A logarithmic binary decision diagram-based method for multistate system analysis. IEEE Transactions on Reliability 2008; 57(4): 595-606, https://doi.org/10.1109/TR.2008.2006038.
- 24. Tao Yongjian, Dong Decun, Ren Peng. An improved method for system fault diagnosis using fault tree analysis. Journal of Harbin Institute of Technology 2010; 42(1): 143-147.
- 25. Weber P, Simon C. Dynamic evidential networks in system reliability analysis: A Dempster Shafer approach. 2008 16th IEEE Mediterranean Conference on Control and Automation 2008; Ajaccio, France, 603-608, https://doi.org/10.1109/med.2008.4602011.
- 26. Wu X, Liu H, Zhang L, et al. A dynamic Bayesian network based approach to safety decision support in tunnel construction. Reliability Engineering & System Safety 2015; 134: 157-168, https://doi.org/10.1016/j.ress.2014.10.021.
- 27. Wu Z, Ahmad J, Xu J. A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Applied Soft Computing 2016; 42: 314-324, https://doi.org/10.1016/j.asoc.2016.02.007.
- 28. Yevkin O. An Efficient Approximate Markov Chain Method in Dynamic Fault Tree Analysis. Quality & Reliability Engineering International 2015; 32(4):1509-1520, https://doi.org/10.1002/qre.1861.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e536648-94f0-41ac-b2c6-7c0db3973518