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1. Introduction

With the development of science and technology, the functional 
requirement and modernization level of modern equipments are in-
creasing, which makes these systems become more and more complex 
and raises some challenges in fault diagnosis. These challenges are 
shown as follows. (1) Failure dependency of components. Modern en-
gineering systems are becoming increasingly complex, which makes 
components interact with each other. So, dynamic fault behaviors 
should be taken into account to construct the fault model. (2) The life 
distributions of components are different. Modern systems include a 
variety of components, and they may have different life distributions. 
Some classical static modeling techniques, including reliability block 
diagram model [12], fault tree (FT) model [20], and binary decision 
diagrams (BDD) model [23] have been widely used to model static 
systems. But these models assume that all components follow the ex-
ponential distribution. However, in the practical engineering, different 

components may have different distributions. For complex systems, a 
mixed life distribution should be used to analyze these systems. (3) 
There are a large number of uncertain factors and uncertain informa-
tion. Many complex systems have adopted a variety of fault tolerant 
technologies to improve their dependability. However, high reliability 
makes it difficult to get sufficient fault data. In the case of the small 
sample data, the traditional methods based on the probability theory 
are no longer appropriate for complex systems. Aiming at these chal-
lenges mentioned above, many efficient diagnostic methods have 
been proposed. In order to model the dynamic failure characteristics, 
DFT [6], Markov model [28] and dynamic Bayesian networks (DBN) 
[9, 26] have been proposed to capture the above mentioned dynamic 
failure behaviors. DFT is widely used to model the dynamic systems 
as the extensions of the traditional static fault trees with sequence- and 
function-dependent failure behaviors. Ge et al. present an improved 
sequential binary decision diagrams (SBDD) method for highly cou-
pled DFT where different dynamic gates often coexist and interact 
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by repeated events [7]. A new approach was proposed by Merle et 
al. to solve DFT with priority dynamic gate and repeated events [17]. 
Chiacchio et al. presented a composition algorithm based on a Weibull 
distribution to address the resolution of a general class of DFT [2]. 
However, these methods assume that all components obey to the 
same distribution and cannot handle the challenge (2). Furthermore, 
these methods, which are usually assumed that the failure rates of the 
components are considered as crisp values describing their reliabil-
ity characteristics, have been found to be inadequate to deal with the 
challenge (3) mentioned above. Therefore, fuzzy sets theory has been 
introduced as a useful tool to handle the challenge (3). The fuzzy fault 
tree analysis model employs fuzzy sets and possibility theory, and 
deals with ambiguous, qualitatively incomplete and inaccurate infor-
mation [8, 16, 18]. To deal with the challenge (1) and (3), fuzzy DFT 
analysis has been introduced [13-14] which employs a DFT to con-
struct the fault model and calculates the reliability results based on the 
continuous-time BN under fuzzy numbers. However, these approaches 
cannot handle the challenge (2). For this purpose, Mi et al. proposed 
a new reliability assessment approach which used a DFT to model 
the dynamic characteristics within complex systems and estimated the 
parameters of different life distributions using the coefficient of vari-
ation (COV) method [19]. To a certain extent, this method can meet 
the above challenges. But it is confined to the reliability analysis and 
cannot be used for the fault diagnosis. Dugan introduced a diagnostic 
importance factor (DIF) to determine the diagnosis sequence using 
DFT analysis [1]. However, the solution for DFT is based on Markov 
Chain which has an apparent state space explosion problem. In the 
work of [3], a hybrid fault diagnosis approach was proposed based on 
fault tree analysis and Bayesian network. Nevertheless, it used a static 
fault tree model and could not capture the dynamic failure behaviors. 
Furthermore, diagnosis strategies of these methods are only based on 
DIF and usually could not do decision making when there were many 
attributes for consideration. In addition, these diagnostic methods are 
usually assumed that the failure rates of components are regarded as 
crisp values and cannot deal with the challenge (3). To overcome these 
difficulties and limitations, Duan et al. proposed a diagnosis method 
based on fuzzy sets theory and DFT, which used fuzzy sets theory to 
estimate the failure rates of basic events and solved the DFT based on 
discrete-time Bayesian networks [5]. However, this approach could 
not handle the challenge (2). In addition, all the diagnosis algorithms 
are based on the single attribute decision making, and usually cause 
minimal cut sets with a smaller DIF to be diagnosed first [24], thereby 
influencing the diagnosis efficiency. 

Motivated by the problems mentioned above, this paper presents 
a novel diagnosis strategy for complex systems based on DEN and an 
improved VIKOR algorithm shown in Fig. 1. It pays close attention to 
meeting above three challenges. In view of the challenge (1), it uses 
a DFT to capture the dynamic failure mechanisms. For the challenges 
(2) and (3), a mixed life distribution is used to analyze complex sys-
tems, and the COV method is employed to estimate the parameters of 
life distributions for components with interval numbers. Furthermore, 
relevant reliability parameters can be calculated by mapping a DFT 
into a DEN in order to avoid the aforementioned problems. At last, 
components’ DIF, BIM and HIV are taken into account comprehen-
sively to design a novel diagnosis strategy using an improved VIKOR 
algorithm. The proposed method takes full advantages of DFT, inter-
val numbers for handling uncertainty, DEN for inference and VIKOR 
for the best fault search scheme, which is especially suitable for fault 
location of complex systems.

The remaining of this paper is organized as follows: In section 2, a 
DEN modeling is introduced and the conversion process from a DFT 
to a DEN is also provided; Section 3 presents a new fault diagnosis 
method based on an improved VIKOR algorithm; An illustrative ex-
ample is provided to demonstrate the proposed method in Section 4; 
Finally, conclusions are made in Section 5.

Fig. 1. A novel fault diagnosis framework for complex systems

2. DEN

D-S evidence theory has a unique ability in the expression of epis-
temic uncertainties. The evidence theory can be well compatible with 
the theory of probability. This section will describe how to compute 
the reliability parameters using DEN. The following simply introduc-
es the relevant definitions and theorems in this paper, and more in-
formation can be referred to literatures [4,10,22]. Evidential Network 
is based on graph theory and D-S theory. It is a promising graphical 
tool for representing and managing uncertainties. Each node repre-
sents a variable, and arcs indicate direct conditional relations between 
the connected nodes. DEN, an extension of evidential network, takes 
into account the time by defining different nodes to model variables 
with respect to different time slices [21]. It includes the initial network 
and the temporal transition network. Each time slice corresponds to 
a static evidential network, and the time slices are a directed acyclic 

graph ,T T TG V E=< > corresponding to the conditional probabilities. 

The TV and TE are respectively nodes of time T and directed arcs. A 
directed arc linked two variables belonging to different time slices.

In evidence theory, { , }i iW FΘ =  is the knowledge framework of 
the component i and the focal elements are given by:

	 2 {{ },{ },{ },{ , }}i i i iW F W FΘ = ∅ 	 (1)
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where { }iW  and { }iF  denote the working and the failure state respec-
tively. The state of { , }i iW F  corresponds to the epistemic uncertainty.

Belief measure (Bel) defines the lower bound of the probabilities 
that the focal element exists, and plausibility measure (Pl) defines the 
upper bound of the probabilities that the focal element exists. The 
basic belief assignment in the system state expresses an epistemic 
uncertainty, where Bel and Pl measures are not equal and bound the 
system reliability. Therefore, the basic probability assignment (BPA) 
of component i can be computed as:

	  

({ }) ({ })
({ }) 1 ({ })
({ , }) ({ }) ({ })

i i

i i

i i i i

m W Bel W
m F Pl W
m W F Pl W Bel F

=

= −

= −
	 (2)

Presumably, the upper and lower bounds of the component reli-
ability [ ( ), ( )P x P x ] is equivalent to the BPA in the DEN:

	
({ }) 1 ( )
({ }) ( )

({ , }) ( ) ( )

i

i

i i

m W P x
m F P x

m W F P x P x

= −

=

= −

	 (3)

where ({ }) ( ), ({ }) ( )Bel F P x Pl F P xi i= = .

2.1.	 Mapping a static fault tree into a DEN

The conditional probabilities of each node in the static evidential 
network have been discussed in detail in [25]. Fig. 2 shows an AND 
gate and its equivalent DEN. Equation 4 and 5 give the conditional 
probability of each node.

Fig. 2. An AND gate and its equivalent DEN
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 = + ∆ = + ∆ = =
 = =


= =

     (5)

2.2.	 Mapping a DFT into a DEN

DFT extended the traditional fault tree by defining some dynamic 
gates to capture the sequential and functional dependencies. Usual-
ly, there are six types of dynamic gates defined: the Functional De-
pendency Gates (FDEP), the Cold Spare Gates (CSP), the Hot Spare 
Gates (HSP), the Warm Spare Gates (WSP), the Priority AND Gates 
(PAND), and the Sequence Enforcing Gates (SEQ).  

Fig. 3. CSP gate and its equivalent DEN

The following section briefly discusses a CSP gate as it is used 
later in the example. The CSP gate includes one primary input and 
one or more alternate inputs. Fig. 3 shows a CSP gate and its equiva-
lent DEN. Suppose that A and B follow the same distribution, then 

( )P x  and ( )P x  denote the lower probability and upper probability of 
the nodes respectively. At this point, node A has the same conditional 
probability with the AND gate of the node A and the conditional prob-
ability of other node B can be calculated by the following equations:

	

( ( ) 0 | ( ) 0) 0
( ( ) 1| ( ) 1, ( ) 0) ( )

( ( ) 1| ( ) 1, ( ) 1) 1
( ( ) 1| ( ) 1, ( ) {0,1}) ( )

( ( ) {0,1} | ( ) {0,1}) ( )- ( )

P B T T A T T
P B T T A T T B T P x

P B T T A T T B T
P B T T A T T B T P x

P B T T A T T P x P x
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
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

+ ∆ = + ∆ = = =
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      (6)

	
( 0 | ( ) 0) 1
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P E B T T
P E B T T
P E B T T

= + ∆ = =
 = + ∆ = =
 = + ∆ = =

	 (7)

2.3.	 Calculating reliability parameters

After a DFT model is built, The DFT is converted into an equiva-
lent DEN using the proposed method. Once the structure of the DEN 
is known and the probability tables are filled, the reliability param-
eters of the system can be calculated using the DEN inference al-
gorithm. These reliability parameters mainly include system unreli-
ability, DIF, BIM and HIV, which are used for fault diagnosis in the 
proposed method.  

2.3.1.	 System unreliability

Calculating the system unreliability is very simple using the fol-
lowing equation:

	 [ , ] [ ({ }), ({ })]S S S S SP P P Bel F Pl F= = 	 (8)

where [ ({ }), ({ })]S SBel F Pl F represents the failure probability of sys-
tem.
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2.3.2.	 DIF

DIF is defined conceptually as the probability that an event has 
occurred given that the top event has also occurred. DIF is the cor-
nerstone of reliability based diagnosis methodology [1]. DIF can be 
used to locate the faulty components in order to minimize the system 
checks and diagnostic cost. It is given by:

	 | |( | ) [ ({ }), ({ })]i i S i SDIF P i S Bel F Pl F= =  	 (9)

where i is a component of system S; ( | )P i S  is the probability that the 
basic event i has occurred given the top event has occurred.

Suppose the system has failed at the mission time, we input the 
evidence that system has failed into DEN and get the DIF of compo-
nents using the inference algorithm.

2.3.3.	 BIM

Birnbaum first introduced the concept of a components’ reliability 
importance in 1969. This measure was defined as the probability that 
a component is critical to system failures. i.e. when component i fails 
it causes the system to move from a working to a failed state. BIM 
of a component i can be interpreted as the rate at which the system’s 
reliability improves as the reliability of component i is improved [21]. 
Analytically, Birnbaum’s importance interval measure of a compo-
nent i can be defined using D-S theory by the following equation:

| || |

[ ( )] [ ({ } |{ }), ({ } |{ })] [ ({ } |{ }), ({ } |{ })]

          [ , ] [ , ]

B
S i S i S i S i

S Wi S FiS Wi S Fi

I i Bel W W Pl W W Bel W F Pl W F

P P P P

= −

= −  	

(10)

where ({ } |{ })s iBel W W  and ({ } |{ })s iPl W W  denote respectively 
the belief and plausibility measures that the system is functioning 
when it is known that component i is in a working state. Whereas 

({ } |{ })s iBel W F  and ({ } |{ })s iPl W F  denote respectively the belief 
and plausibility measures that the system is functioning when compo-
nent i is in a failed state.

2.3.4.	 HIV

The heuristic function plays an important role in the diagnostic 
sequence [11]. Owing to the different complexity of components their 
test cost is different, a balance should be taken into account between 
the DIF and test cost. Therefore, a new heuristic function for complex 
systems, HIV is proposed. HIV represents the value of the heuris-
tic information contained in each fault search path and the influence 
degree of the fault search on the next optimal fault search. With the 
combination of DIF and the test cost, HIV is defined by the following 
expression:

	 ( | )i
i

i i

DIF P i sHIV
T T

= =  	 (11)

The test cost of the components is usually very difficult to express 
as crisp values because of uncertainties. So the linguistic assessments 
are used for generating criteria and alternative ratings, which are 
transformed into interval numbers to describe test cost of the compo-
nents for treatment by VIKOR. Table 1 shows the evaluation criteria 
and alternative ratings of the test cost.

3. Fault diagnosis strategy based on an improved VIKOR 
algorithm 

The basic information provided by reliability analysis can be used 
to construct the diagnostic decision table for fault diagnosis. Assume 
that the DEN has n root nodes, each root node represents a diagnostic 
scheme, ( 1,2, , )ix i n= ⋅ ⋅ ⋅  represents the diagnostic scheme and each 
root node has k reliability parameters. DIF enables us to discriminate 
between components by their importance from a diagnostic point of 
view. BIM is used to quantify the contributions of components’ relia-
bility to the systems’ reliability and HIV plays an important role in the 
diagnostic sequence. DIF, BIM, and HIV are treated as attribute v1, 
v2 and v3 respectively. These attributes can be considered compre-
hensively to obtain the best faulty search scheme using an improved 
VIKOR algorithm [27].

3.1.	 Normalizing diagnostic decision table

Fault diagnosis is a process to optimize multi-attribute decision 
making. After the search scheme for fault diagnosis is defined, we can 
construct the diagnostic decision table by the corresponding evalua-
tion attributes. However, different evaluation attributes usually have 
different values and dimensions, which are not directly comparable, 
so we should normalize the diagnostic decision table. Evaluation at-
tributes can be divided into two classes: benefit attributes and cost 
attributes. There are three attributes in the diagnostic decision table, 
DIF, BIM and HIV, which belong to the benefit attributes. For the dif-
ferent data, we use the following formula to normalize them.

When the attribute ijx
 
is a benefit attribute, we use the following 

formula to normalize them:

	

1 1

[ , ] [ , ]
t t
ij ijt t t

ij ij ij m m
t t
ij ij

i i

x x
f f f

x x
= =

= =

∑ ∑


 	 (12)

where ijx
 
is the jth attribute value of the ith component.

When the attribute ijx  is a cost attribute, we normalize them by using 
the following formula:

	

1 1

1 1

[ , ] [ , ]
1 1

t t
ij ijt t t

ij ij ij m m

t t
i iij ij

x x
f f f

x x= =

= =

∑ ∑
  	 (13)

3.2.	 Determining the weights of attributes

Shannon Entropy is a measure of uncertainty of information for-
mulated in terms of probability theory [15]. It is well suited for meas-
uring the relative contrast intensities of criteria to represent the aver-
age intrinsic information transmitted to the decision makers. Entropy 
weighting is a multi-attribute decision making (MADM) method used 
to determine the important weights of decision attributes by directly 
relating a criterion’s importance weighting relative to the information 
transmitted by that criterion. However, because the elements of the 

Table 1.	 Evaluation standards of the test cost

Linguistic expression for test cost Interval values

Very High [0.9  1.0]

High [0.7  0.9]

Moderate [0.5  0.7]

Low [0.3  0.5]

Very Low [0.1  0.3]
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decision matrix are interval numbers, the Entropy method cannot be 
used directly. Therefore, before the entropy method is put into use, the 
decision matrix needs to be quantized.

The diagnosis decision table needs to be normalized before the 
positive and negative ideal solutions are being calculated. The posi-
tive ideal solutions are made of all the best performance scores, and 
the negative solutions are made of all the worst performance scores at 
these measures in the diagnostic decision table. To compute the posi-
tive and negative ideals, by the relations:

	 max , min     j ij j ij
i Mi M

f f f f j N+ −

∈∈
= = ∈  	 (14)

Suppose that [ , ]a a a− +=  and [ , ]b b b− +=  are two interval 
numbers, the interval deviation degree distance ( , )D a b  between 

[ , ]a a a− +=  and [ , ]b b b− +=  is :

	 2 2( , ) ( ) ( )D a b a b a b− − + += − + −  	 (15)

The larger the interval deviation degree distance ( , )D a b , the 
greater the degree of phase separation will be. In particular, when

( , )D a b = 0, then a = b, which means that a and b are equal.
The diagnostic decision table is the interval numbers, which are 

difficult to directly compare. In order to determine the weight of at-
tributes, the concept of the interval deviation degree distance is used. 
The objective weights of attributes can be calculated based on the 
Entropy concept through the following steps: 

Step 1: Transform the normalization matrix [ , ]t t t
ij ij ijf f f=  into 

the interval deviation degree distance matrix ( )ij n mD d ×= , where 

( , )ij ij jd D f f ∗= ; [ , ]
jj jf f f∗ − += . 

Step 2:  Normalize the evaluation criterion for the interval deviation 
degree distance matrix through:

	

1

ij
ij n

ij
i

d
p

d
=

=

∑
	 (16)

where 
1

1, 1,2, ,
n

ij
i

p j m
=

= = ⋅ ⋅ ⋅∑ .

Step 3: Obtain the entropy  value of the attributes j as follows:

	
1

ln ( 1,2, , )
n

j ij ij
i

H K p p j m
=

= − = ⋅ ⋅ ⋅∑  	 (17)

where 1 / ln  ( 0,0 1)ijK n K p= > ≤ ≤  and assume 0ijp = , then
ln 0ij ijp p = .

Step 4: Define the value of αj through:

	 αj = 1−Hj	 (18)

Where αj is the divergence degree of the intrinsic information of 
the attributes j. The greater the value of αj, the more important the at-
tribute is in the decision making process.

Step 5: Calculate the weights of attributes using the following equa-
tion:

	 ω
α

α
j

j

jj
m=
=∑ 1

	 (19)

3.3. Calculating the values [ , ]i i iS S S=  and [ , ]i i iR R R=

The value [ , ]i i iS S S=  of all the decision-making program group 
is calculated by the linear programming mothed:

	

min

. .
,

' '
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S
f f
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i j
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n j ij

j j

j j j
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−
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
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


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+ −∑ω
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
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1

	 (20)
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'' ''
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
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∈

=




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
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1

	 (21)

Suppose the optimal solutions of model (20) and (21) are 

ω ω ω ω' ' ' '( , , , )= ⋅ ⋅ ⋅1 2 n  and ω ω ω ω'' '' '' ''( , , , )= ⋅ ⋅ ⋅1 2 n S S Si i i= [ , ]  respec-

tively, then we can compute the interval values [ , ]i i iS S S=  by the 

linear programming method. where iS  and iS  are defined by:

	 S
f f

f fi j
j

n j ij

j j
=

−

−











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+

+ −∑ω '

1
	 (22)

	 S
f f

f fi j
j

n j ij

j j
=

−

−











=

+

+ −∑ω ''

1
	 (23)

Similarly, the interval values [ , ],i i iR R R i M= ∈  can also be com-
puted by the linear programming method. where iR  and iR  are given 
by:

	 R
f f

f fi
j N

j
j ij

j j
=

−

−
























∈

+

+ −max 'ω 	 (24)
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f f

f f
i Mi

j N
j

j ij

j j
=

−

−
























∈

∈

+

+ −max ,''ω 	 (25)

3.4.	 Calculating the values [ , ]i ii
Q Q Q=

We can calculate the values of [ , ]Q Q Qii i=  by the relations:
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where S S S S R R R R
i

i
i

i
i

i
i

i
− + − += = = =min , max , min , max  and ν is 

introduced as the weight for the strategy of maximum group utility, 
whereas 1−ν is the weight of the individual regret. Usually, ν can take 
any value from 0 to 1 and the value of ν is set to 0.5 in the paper.

3.5.	 Determining the optimal diagnosis sequence

After the value of [ , ]Q Q Qii i=  expressed in interval numbers 
is obtained, the possibility matrix should be built to rank the alterna-
tives. The possibility matrix can be defined as:

	

1 2 1

2 1 2

1 2
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m m

p Q Q p Q Q
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

         0.5

 
 
 
 
 
  

     (28)

Then the corresponding possibility ( )ip x  can be obtained using 
the following equation.

	
1

( ) ( ), ,
m

i k i
j

p x p Q Q i k M
=

= ≥ ∈∑ 	 (29)

Obviously, the smaller the value ( )ip x , the better the diagnostic 
scheme. Therefore, we can determine the optimal ranking order by 
the value ( )ip x  and choose the diagnostic scheme with the minimum 
value ( )ip x .

4. Numerical Application

An illustrative example is given to illustrate how the proposed 
method can be used to perform the diagnosis strategy analysis for the 
braking system using multi-attribute decision making with interval 
numbers. Suppose all components follow the exponential distribution 
or two-parameter Weibull distribution. For the components with an 
exponential distribution, the interval failure rates of the basic events 
for the braking system can be calculated using the expert elicitation 
and the fuzzy sets theory. For the components with a two-parameter 
Weibull distribution, the interval failure rates are calculated using the 
COV method [19]. DFT of the braking system is shown in Fig. 4. The 
interval failure rates of basic events are shown in Table 2. We can map 
the DFT into the equivalent DEN shown in Fig. 5.

Fig. 4. A DFT for service braking failure of braking syste
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In this numerical example, component X2 follows a two-parame-
ter Weibull distribution with parameters η and β, and the distribution 
function is calculated as follows:

	 F t P T t
exp tt

( ) ( )
{ ( ) },

= ≤ =
− − >

≤



1 0

0

∆
η

β

                      t 0




	 (30)

Fig. 5. A DEN of the braking system

Table 2.	 The interval failure rates of basic events

Components Failure rate/ hour Components Failure rate/hour 

X1 [2.88e-6  4.20e-6] X12, X13 [6.96e-6  1.04e-5]

X3, X9  [6.08e-7  9.12e-7] X14, X15 [5.68e-6  8.52e-6]

 X10, X11 [6.08e-7  9.12e-7] X16, X17 [5.44e-7  8.16e-7]

X4 [3.28e-7  4.92e-7] X18, X19 [3.84e-5  5.76e-5]

X5 [1.12e-5  1.68e-5] X20, X21 [3.84e-5  5.76e-5]

X6 [0.80e-6  1.20e-6] X22, X23 [3.04e-5  4.56e-5]

X7 [0.88e-5  1.32e-5] X24, X25 [3.04e-5  4.56e-5]

X8 [7.12e-6  1.07e-5] X26 [6.24e-6  9.36e-6]

Table 3.	 Occurrence probabilities of failure at the different mission time

Mission time (h) Interval occurrence probability

500 [0.00644  0.01321]

1000 [0.01550  0.03322]

1500 [0.02690  0.05857]

2000 [0.04035  0.08805]

Table 4.	 Components’ test cost and HIV of the components

Components Test cost iT HIV

X1 [0.9  1.0] [0.14233  0.16066]
X2 [0.5  0.7] [0.06333  0.08992]
X3 [0.1  0.3] [0.00413  0.01850]
X4 [0.7  0.9] [0.00074  0.00143]
X5 [0.7  0.9] [0.02461  0.04720]
X6 [0.7  0.9] [0.00178  0.00343]
X7 [0.7  0.9] [0.01939  0.03723]
X8 [0.7  0.9] [0.01572  0.03020]
X9 [0.1  0.3] [0.00407  0.01820]

X10 [0.1  0.3] [0.00407  0.01820]
X11 [0.1  0.3] [3.08e-06  0.00610]
X12 [0.9  1.0] [0.01664  0.02607]
X13 [0.9  1.0] [0.00297  0.01099]
X14 [0.9  1.0] [0.00111  0.00183]
X15 [0.9  1.0] [1.83e-5   0.00062]
X16 [0.1  0.3] [0.00373  0.01660]
X17 [0.1  0.3] [0.00373  0.01660]
X18 [0.5  0.7] [0.42227  0.64426]
X19 [0.5  0.7] [0.42227  0.64426]
X20 [0.3  0.5] [0.13046  0.31073]
X21 [0.3  0.5] [0.01766  0.01284]
X22 [0.5  0.7] [0.42227  0.64426]
X23 [0.5  0.7] [0.42227  0.64426]
X24 [0.3  0.5] [0.13046  0.31073]
X25 [0.3  0.5] [0.01766  0.12837]
X26 [0.5  0.7] [0.43907  0.62332]
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Table 6.	 Interval values of S, R and Q for all components

Components [ , ]i i iS S S= [ , ]i i iR R R= [ , ]i i iQ Q Q=

X1 [0.4365  0.6208] [0.2503  0.2896] [0.5827 0.7376]
X2 [0.5777  0.7352] [0.2873  0.3140] [0.7120 0.8338]
X3 [0.9620  0.9974] [0.3320  0.3328] [0.9776 0.9969]
X4 [0.9718  0.9989] [0.3329  0.3333] [0.9840 0.9985]
X5 [0.9153  0.9723] [0.3091  0.3326] [0.9721 0.9866]
X6 [0.9697  0.9980] [0.3317  0.3329] [0.9183 0.9839]
X7 [0.9277  0.9782] [0.3142  0.3326] [0.9326 0.9868]
X8 [0.9364  0.9823] [0.3179  0.3326] [0.9427 0.9889]
X9 [0.9627  0.9976] [0.3320  0.3328] [0.9780 0.9971]

X10 [0.9627  0.9976] [0.3320  0.3328] [0.9780 0.9971]
X11 [0.9702  1.0000] [0.3333  0.3339] [0.9838 1.0000]
X12 [0.9336  0.9767] [0.3200  0.3295] [0.9445 0.9812]
X13 [0.6554  0.7903] [0.3278  0.3326] [0.8145 0.8908]
X14 [0.9971  0.9984] [0.3326  0.3332] [0.9832 0.9980]
X15 [0.6705  0.7952] [0.3333  0.3339] [0.8307 0.8953]
X16 [0.9632  0.9976] [0.3322  0.3329] [0.9785 0.9972]
X17 [0.9632  0.9976] [0.3322  0.3329] [0.9785 0.9972]
X18 [0.2466  0.5716] [0.2466  0.3023] [0.4797 0.7322]
X19 [0.2466  0.5716] [0.2466  0.3023] [0.4797 0.7322]
X20 [0.7144  0.8985] [0.3045  0.3305] [0.8086 0.9428]
X21 [0.8107  0.9595] [0.2940  0.3281] [0.8415 0.9703]
X22 [0.2466  0.5716] [0.2466  0.3023] [0.4797 0.7322]
X23 [0.2466  0.5716] [0.2466  0.3023] [0.4797 0.7322]
X24 [0.7134  0.8985] [0.3045  0.3305] [0.8080 0.9428]
X25 [0.8107  0.9595] [0.2940  0.3281] [0.8415 0.9703]
X26 [0.0217  0.3798] [0.0109  0.1980] [0          0.4727]

Table 5.	 The diagnostic decision table for the braking system

Components DIF BIM HIV
X1 [0.14233  0.14459] [0.91965  0.965196] [0.14233  0.16066]
X2 [0.04433  0.04496] [0.91419  0.961368] [0.06333  0.08992]
X3 [0.00124  0.00185] [-0.04679 0.049173] [0.00413  0.01850]
X4 [0.00067  0.00100] [-0.04653 0.049354] [0.00074  0.00143]
X5 [0.02215  0.03304] [-0.04770 0.047695] [0.02461  0.04720]
X6 [0.00160  0.00240] [-0.04767 0.047745] [0.00178  0.00343]
X7 [0.01745  0.02606] [-0.04768 0.047724] [0.01939  0.03723]
X8 [0.01415   0.02114] [-0.04768 0.047734] [0.01572  0.03020]
X9 [0.00122  0.00182] [-0.04770 0.047695] [0.00407  0.01820]

X10 [0.00122  0.00182] [-0.04770 0.047695] [0.00407  0.01820]
X11 [9.23e-7  0.00061] [-0.04770 0.047695] [3.08e-06 0.00610]
X12 [0.01664  0.02346] [-0.03301   0.05561] [0.01664  0.02607]
X13 [0.00297  0.00989] [0.91843    0.95976] [0.00297  0.01099]
X14 [0.00111  0.00165] [-0.04654 0.048318] [0.00111  0.00183]
X15 [1.83e-05 0.00056] [0.91245  0.959648] [1.83e-5  0.00062]
X16 [0.00112  0.00166] [-0.04665 0.049183] [0.00373  0.01660]
X17 [0.00112  0.00166] [-0.04665 0.049183] [0.00373  0.01660]
X18 [0.29559  0.32213] [0.09422  0.228649] [0.42227  0.64426]
X19 [0.29559  0.32213] [0.09422  0.228649] [0.42227  0.64426]
X20 [0.06523  0.09322] [-0.03775 0.054004] [0.13046  0.31073]
X21 [0.00883  0.03851] [0.07898  0.219255] [0.01766  0.12837]
X22 [0.29559  0.32213] [0.09422  0.228649] [0.42227  0.64426]
X23 [0.29559  0.32213] [0.09422  0.228649] [0.42227  0.64426]
X24 [0.06523  0.09322] [-0.03775 0.054005] [0.13046  0.31073]
X25 [0.00883  0.03851] [0.07898  0.219255] [0.01766  0.12837]
X26 [0.30735  0.31166] [0.91919  0.971704] [0.43907  0.62332]
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The interval life 0.95 0.5[   ]R Rt t= =  of X2 is [2100 4200] using the 
general accelerated life test. Other components follow an exponential 
failure distribution with parameter λ, and the distribution function is 
calculated as follows:

	 F t P T t t( ) ( ) exp( )= ≤ = − −1 λ∆ 	 (31)

Supposing that the mission time is T=2000 hours and T∆ =500 
hours, we can calculate the system unreliability using the Eq. (8). 
Table 3 shows the top event occurrence probabilities at the different 
mission time. 

Considering to the different complexity of components their test 
cost is different. According to the evaluation standards of the test cost 
in Table 1, we can calculate HIV using the Eq. (11). Table 4 shows the 
components’ test cost and HIV of the components. Solving the DEN 
using the inference algorithm gives the DIF and BIM of components 
for the braking system. The diagnostic decision table for the braking 
system is shown in Table 5.

Based on the entropy methodology, the weights of the three at-
tributes, ω1=0.3339, ω2 =0.3326, ω3 =0.3335 are obtained using the 
Eq. (12) - (19). Table 6 presents the interval values of S, R and Q for 
all components. And the values of ( )ip x  as shown in Table 7 are cal-
culated using the Eq. (29). It can be seen from the results of Table 7 
that the optimal diagnosis sequence of the braking system is:
X26≻ X18(X19 X22 X23) ≻ X1≻X2≻ X13≻ X15≻ X24≻ X20≻X25≻ 
X21 ≻ X5≻ X7≻ X12≻ X8≻ X3≻ X10≻ X9≻ X16(X17) ≻ X6≻ X14≻ 
X4≻ X11. 

5. Conclusions

In this paper, we have discussed the use of 
DFT, DEN and an improved VIKOR algorithm 
to locate complex systems failure. Specifically, it 
has emphasized three important issues that arise 
in engineering diagnostic applications, namely 
the challenges of failure dependency, different 
life distributions and epistemic uncertainty. In 
terms of the challenge of epistemic uncertainty, 
the failure rates of the basic events for complex 
systems are expressed in interval numbers; In 
terms of the challenge of failure dependency, 
DFT is used to model the dynamic behaviors of 
system failure mechanisms. In terms of the chal-
lenge of multiple life distributions, a mixed life 

distribution is used to analyze complex systems. Furthermore, we cal-
culate some reliability results by mapping a DFT into an equivalent 
DEN in order to avoid some disadvantages. In addition, we take DIF, 
BIM and HIV into account and obtain the optimal diagnostic ranking 
order using an improved VIKOR algorithm. The proposed method 
takes full advantage of DFT for modeling, interval numbers for han-
dling uncertainty and VIKOR for the best fault search scheme, which 
is especially suitable for fault diagnosis of complex systems.

In the future work, we will focus on how to incorperate sensors 
data to optimize the diagnosis efficiency.
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Table 7.	 The value of ( )ip x  for all components

Components ( )ip x Components ( )ip x Components ( )ip x

X1 5.1472 X10 17.7954 X19 3.5006
X2 9.0748 X11 17.9431 X20 13.4062
X3 17.7862 X12 16.9198 X21 14.6798
X4 17.9213 X13 12.4142 X22 3.5006
X5 16.4790 X14 17.8992 X23 3.5006
X6 17.8562 X15 12.8610 X24 13.3949
X7 16.8035 X16 17.8063 X25 14.6798
X8 17.0278 X17 17.8063 X26 0.5000
X9 17.7954 X18 3.5006
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