Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Urban centers, replete with diverse amenities and opportunities, simultaneously grapple with the challenges brought on by rapid urbanization, notably in the realms of transport and logistics. A pivotal move towards energy-efficient and sustainable systems is essential to mitigate these challenges. In this landscape, machine learning (ML), and particularly recurrent neural networks (RNNs), emerge as powerful tools for effectively addressing these urban complexities. This comprehensive review zeroes in on the deployment of RNNs within sustainable urban transportation and logistics, highlighting their adeptness in processing sequential data, a critical component in various forecasting and optimization tasks. We commence with a foundational understanding of RNNs, segueing into their successful applications in urban transport and logistics. This review also critically examines the constraints of current methodologies and potential avenues for enhancement. We scrutinize the application of RNNs across several areas, encompassing the energy shift in both passenger and freight transport, logistics management, integration of low- and zero-emission vehicles, and the energy dynamics of transport and logistics. Additionally, the role of RNNs in traffic and infrastructure planning is explored, particularly in forecasting traffic flow, congestion patterns, and optimizing energy usage. The crux of this review is to amalgamate and present the existing knowledge on the instrumental role of RNNs in facilitating the transition to energy-efficient urban transportation and logistics. Our goal is to highlight effective strategies, pinpoint challenges, and map out avenues for future research in this domain.
Rocznik
Tom
Strony
131--149
Opis fizyczny
Bibliogr. 140 poz., rys.
Twórcy
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin Poland
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
autor
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
- University of Szczecin, Institute of Marine and Environmental Sciences 13 Wąska St., 71-415 Szczecin, Poland
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
- University of Szczecin, Institute of Biology 3c Felczaka St., 71-412 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
Bibliografia
- 1. Abdullah, S.M., Periyasamy, M., Kamaludeen, N.A., Towfek, S.K., Marappan, R., Kidambi Raju, S., Alharbi, A.H. & Khafaga, D. (2023) Optimizing traffic flow in smart cities: Soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning. Sustainability 15(7), 5949, doi: 10.3390/su15075949.
- 2. Adedeji, B.P. (2023) Electric vehicles survey and a multifunctional artificial neural network for predicting energy consumption in all-electric vehicles. Results in Engineering 19, p. 101283, doi: 10.1016/j.rineng.2023.101283.
- 3. Agarwal, A., Yadav, A. & Vishwakarma, D.K. (2019) Multimodal sentiment analysis via RNN variants. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD), pp. 19–23, doi: 10.1109/BCD.2019.8885108.
- 4. Ang, K.L.-M., Seng, J.K.P., Ngharamike, E. & Ijemaru, G.K. (2022) Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches. ISPRS International Journal of Geo-Information 11(2), 85, doi: 10.3390/ijgi11020085.
- 5. Asha, A., Arunachalam, R., Poonguzhali, I., Urooj, S. & Alelyani, S. (2023) Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm. Measurement 210, 112505, doi: 10.1016/j.measurement.2023.112505.
- 6. Ayoub Shaikh, T., Rasool, T. & Rasheed Lone, F. (2022) Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming, Computers and Electronics in Agriculture 198, 107119, doi: 10.1016/j.compag.2022.107119.
- 7. Azad, A. & Wang, X. (2021) Land use change ontology and traffic prediction through recurrent neural networks: A case study in Calgary, Canada. ISPRS International Journal of Geo-Information 10(6), 358, doi: 10.3390/ ijgi10060358.
- 8. Babbar, S. & Bedi, J. (2023) Real-time traffic, accident, and potholes detection by deep learning techniques: a modern approach for traffic management. Neural Computing and Applications 35(26), pp. 19465–19479, doi: 10.1007/ s00521-023-08767-8.
- 9. Bai, Y., Xie, J., Liu, C., Tao, Y., Zeng, B. & Li, C. (2021) Regression modeling for enterprise electricity consumption: A comparison of recurrent neural network and its variants. International Journal of Electrical Power & Energy Systems 126, 106612, doi: 10.1016/j.ijepes.2020.106612.
- 10. Bastarianto, F.F., Hancock, T.O., Choudhury, C.F. & Manley, E. (2023) Agent-based models in urban transportation: review, challenges, and opportunities. European Transport Research Review 15(1), 19, doi: 10.1186/ s12544-023-00590-5.
- 11. Bedi, G., Venayagamoorthy, G.K. & Singh, R. (2020) Development of an IoT-driven building environment for prediction of electric energy consumption. IEEE Internet of Things Journal 7(6), pp. 4912–4921, doi: 10.1109/ JIOT.2020.2975847.
- 12. Bhatia, V., Jaglan, V., Kumawat, S., Siwach, V. & Sehrawat, H. (2022) Intelligent transportation system applications: A traffic management perspective. In: Raj, J.S., Palanisamy, R., Perikos, I., Shi, Y. (eds) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems 213, pp. 419–433, Springer, Singapore, doi: 10.1007/978-981- 16-2422-3_33.
- 13. Bjerkan, K.Y., Ryghaug, M. & Skjølsvold, T.M. (2021) Actors in energy transitions: Transformative potentials at the intersection between Norwegian port and transport systems. Energy Research & Social Science 72, 101868, doi: 10.1016/j.erss.2020.101868.
- 14. Breed, A.K., Speth, D. & Plötz, P. (2021) CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe. Energy Policy 159, 112640, doi: 10.1016/j. enpol.2021.112640.
- 15. Chaturvedi, S., Rajasekar, E., Natarajan, S. & McCullen, N. (2022) A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 168, 113097, doi: 10.1016/j.enpol.2022.113097.
- 16. Chen, Y.-T., Sun, E.W., Chang, M.-F. & Lin, Y.-B. (2021) Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0. International Journal of Production Economics 238, 108157, doi: 10.1016/j.ijpe.2021.108157.
- 17. Choi, R.Y., Coyner, A.S., Kalpathy-Cramer, J., Chiang, M.F. & Campbell, J.P. (2020) Introduction to machine learning, neural networks, and deep learning. Translational Vision Science & Technology 9(2), 14, doi: 10.1167/ tvst.9.2.14.
- 18. Choi, T.-M., Guo, S. & Luo, S. (2020) When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management? Transportation Research Part E: Logistics and Transportation Review 135, 101860, doi: 10.1016/j.tre.2020.101860.
- 19. Cossu, A., Carta, A., Lomonaco, V. & Bacciu, D. (2021) Continual learning for recurrent neural networks: An empirical evaluation. Neural Networks 143, pp. 607– 627, doi: 10.1016/j.neunet.2021.07.021.
- 20. Dehghani-Sanij, A. & Kashkooli, F.M. (2023) New developments and prospects in clean and renewable energies. Applied Sciences 13(17), 9632, doi: 10.3390/app13179632.
- 21. . Deng, Y., Li, F., Zhou, S., Zhang, S., Yang, Y., Zhang, Q. & Li, Y. (2023) Use of recurrent neural networks considering maintenance to predict urban road performance in Beijing, China. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2254), doi: 10.1098/rsta.2022.0175.
- 22. DiPietro, R. & Hager, G.D. (2020) Deep learning: RNNs and LSTM. In: Handbook of Medical Image Computing and Computer Assisted Intervention, Elsevier, pp. 503–519, doi: 10.1016/B978-0-12-816176-0.00026-0.
- 23. Dong, P., Wang, S., Niu, W., Zhang, C., Lin, S., Li, Z., Gong, Y., Ren, B., Lin, X. & Tao, D. (2020) RTMobile: Beyond real-time mobile acceleration of RNNs for speech recognition. 57th ACM/IEEE Design Automation Conference (DAC), IEEE, pp. 1–6, doi: 10.1109/ DAC18072.2020.9218499.
- 24. Du, P., He, X., Cao, H., Garg, S., Kaddoum, G. & Hassan, M.M. (2023) AI-based energy-efficient path planning of multiple logistics UAVs in intelligent transportation systems. Computer Communications 207, pp. 46–55, doi: 10.1016/j.comcom.2023.04.032.
- 25. Fatma, S., Hameed, A., Noman, M., Ahmed, T., Shahid, M., Tariq, M., Sohail, I. & Tabassum, R. (2018) Lignocellulosic biomass: A sustainable bioenergy source for the future. Protein & Peptide Letters 25(2), pp. 148–163, doi: 10.2174/0929866525666180122144504.
- 26. Fernández, R.Á., Caraballo, S.C. & López, F.C. (2019) A probabilistic approach for determining the influence of urban traffic management policies on energy consumption and greenhouse gas emissions from a battery electric vehicle. Journal of Cleaner Production 236, 117604, doi: 10.1016/j.jclepro.2019.117604
- 27. Fields, N.L., Miller, V.J., Cronley, C., Hyun, K. (Kate), Mattingly, S.P., Khademi, S., Nargesi, S.R.R. & Williams, J. (2020) Interprofessional collaboration to promote transportation equity for environmental justice populations: A mixed methods study of civil engineers, transportation planners, and social workers’ perspectives. Transportation Research Interdisciplinary Perspectives 5, 100110, doi: 10.1016/j.trip.2020.100110.
- 28. Fiori, C., Marzano, V., Punzo, V. & Montanino, M. (2021) Energy consumption modeling in presence of uncertainty. IEEE Transactions on Intelligent Transportation Systems 22(10), pp. 6330–6341, doi: 10.1109/ TITS.2020.2991270.
- 29. Forrest, K., Lane, B., Tarroja, B., Mac Kinnon, M. & Samuelsen, S. (2023) Emissions and air quality implications of enabling on-road vehicles as flexible load through widescale zero emission vehicle deployment in California. Transportation Research Record: Journal of the Transportation Research Board 2677(3), pp. 1085– 1096, doi: 10.1177/03611981221121259.
- 30. . Füllemann, Y., Moreau, V., Vielle, M. & Vuille, F. (2020) Hire fast, fire slow: the employment benefits of energy transitions. Economic Systems Research 32(2), pp. 202–220, doi: 10.1080/09535314.2019.1695584.
- 31. Gedik, A., Uslu, O. & Lav, A.H. (2022) A prospective study to evaluate CO2 emission mitigation strategies for highway transportation. Environmental Monitoring and Assessment 194(10), 703, doi: 10.1007/s10661-022-10349-5.
- 32. GitHub (2023) Traffic Flow Data Analysis. [Online]. Available from: https://github.com/TyMill/publi2 [Accessed: November 22, 2023].
- 33. Go, R., Kahrl, F. & Kolster, C. (2020) Planning for low-cost renewable energy. The Electricity Journal 33(2), 106698, doi: 10.1016/j.tej.2019.106698.
- 34. Goel, A., Goel, A.K. & Kumar, A. (2023) The role of artificial neural network and machine learning in utilizing spatial information. Spatial Information Research 31(3), pp. 275–285, doi: 10.1007/s41324-022-00494-x
- 35. Goes, G.V., Schmitz Gonçalves, D.N., de Almeida D’Agosto, M., de Mello Bandeira, R.A. & Grottera, C. (2020) Transport-energy-environment modeling and investment requirements from Brazilian commitments. Renewable Energy 157, pp. 303–311, doi: 10.1016/j. renene.2020.05.032.
- 36. Guo, K., Hu, Y., Qian, Z., Liu, H., Zhang, K., Sun, Y., Gao, J. & Yin, B. (2021) Optimized graph convolution recurrent neural network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems 22(2), pp. 1138–1149, doi: 10.1109/TITS.2019.2963722.
- 37. Hainsch, K., Löffler, K., Burandt, T., Auer, H., Crespo del Granado, P., Pisciella, P. & Zwickl-Bernhard, S. (2022) Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal? Energy 239, 122067, doi: 10.1016/j. energy.2021.122067.
- 38. Hochreiter, S. & Schmidhuber, J. (1997) Long shortterm memory. Neural Computation 9(8), pp. 1735–1780, doi: 10.1162/neco.1997.9.8.1735.
- 39. Hofmann, E., Sternberg, H., Chen, H., Pflaum, A. & Prockl, G. (2019) Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management 49(10), pp. 945–955, doi: 10.1108/IJPDLM-11-2019-399.
- 40. Hou, L., Dong, J., Herrera, O.E. & Mérida, W. (2023) Energy management for solar-hydrogen microgrids with vehicle-to-grid and power-to-gas transactions. International Journal of Hydrogen Energy 48(5), pp. 2013–2029, doi: 10.1016/j.ijhydene.2022.09.238.
- 41. Hu, W., Dong, J., Hwang, B., Ren, R. & Chen, Z. (2019) A scientometrics review on city logistics literature: Research trends, advanced theory and practice. Sustainability 11(10), 2724, doi: 10.3390/su11102724.
- 42. Hu, J., Wang, X., Zhang, Y., Zhang, D., Zhang, M. & Xue, J. (2020) Time series prediction method based on variant LSTM recurrent neural network. Neural Processing Letters 52(2), pp. 1485–1500, doi: 10.1007/s11063-020- 10319-3.
- 43. Iyer, L.S. (2021) AI enabled applications towards intelligent transportation. Transportation Engineering 5, 100083, doi: 10.1016/j.treng.2021.100083.
- 44. Jain, M., Keren, G., Mahadeokar, J., Zweig, G., Metze, F. & Saraf, Y. (2020) Contextual RNN-T for open domain ASR. ArXiv Preprint ArXiv:2006.03411.
- 45. Jamal, M.T. & Khan, N.A. (2021) Adoption of telecommuting and its impact on traffic congestion, energy consumption and emission levels in India. Interdisciplinary Environmental Review (IER) 21(3–4), pp. 249–268.
- 46. Jeong, Y., Kim, S. & Yi, K. (2020) Surround vehicle motion prediction using LSTM-RNN for motion planning of autonomous vehicles at multi-lane turn intersections. IEEE Open Journal of Intelligent Transportation Systems 1, pp. 2–14, doi: 10.1109/OJITS.2020.2965969.
- 47. Jian, L., Yongqiang, Z., Larsen, G.N.S. & Snartum, A. (2020) Implications of road transport electrification: A long-term scenario-dependent analysis in China. ETransportation 6, 100072, doi: 10.1016/j.etran.2020.100072.
- 48. Johnson, M.T.J. & Munshi-South, J. (2017) Evolution of life in urban environments. Science 358(6363), eaam8327, doi: 10.1126/science.aam8327.
- 49. Jordan, I.D., Sokół, P.A. & Park, I.M. (2021) Gated recurrent units viewed through the lens of continuous time dynamical systems. Frontiers in Computational Neuroscience 15, doi: 10.3389/fncom.2021.678158.
- 50. Kag, A., Zhang, Z. & Saligrama, V. (2019) RNNs incrementally evolving on an equilibrium manifold: A panacea for vanishing and exploding gradients? International Conference on Learning Representations.
- 51. Karyukin, V., Rakhimova, D., Karibayeva, A., Turganbayeva, A. & Turarbek, A. (2023) The neural machine translation models for the low-resource Kazakh–English language pair. PeerJ Computer Science 9(8), e1224, doi: 10.7717/peerj-cs.1224.
- 52. Kaspi, M., Raviv, T. & Ulmer, M.W. (2022) Directions for future research on urban mobility and city logistics. Networks 79(3), pp. 253–263, doi: 10.1002/net.22092.
- 53. . Kaur, M. & Mohta, A. (2019) A review of deep learning with recurrent neural network. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, pp. 460–465, doi: 10.1109/ ICSSIT46314.2019.8987837
- 54. Khera, P. & Kumar, N. (2020) Role of machine learning in gait analysis: a review. Journal of Medical Engineering & Technology 44(8), pp. 441–467, doi: 10.1080/03091902 .2020.1822940.
- 55. Kiani, B., Ogden, J., Sheldon, F.A. & Cordano, L. (2020) Utilizing highway rest areas for electric vehicle charging: economics and impacts on renewable energy penetration in California. UC Davis Research Reports, doi: 10.7922/ G2N29V6B.
- 56. Kim, G., Lee, G., An, S. & Lee, J. (2023) Forecasting future electric power consumption in Busan New Port using a deep learning model. The Asian Journal of Shipping and Logistics 39(2), pp. 78–93, doi: 10.1016/j.ajsl.2023.04.001.
- 57. Kovač, A., Paranos, M. & Marciuš, D. (2021) Hydrogen in energy transition: A review. International Journal of Hydrogen Energy 46(16), pp. 10016–10035, doi: 10.1016/j. ijhydene.2020.11.256.
- 58. Kumar Sharma, D., Brahmachari, S., Singhal, K. & Gupta, D. (2022) Data driven predictive maintenance applications for industrial systems with temporal convolutional networks. Computers & Industrial Engineering 169, 108213, doi: 10.1016/j.cie.2022.108213.
- 59. Lara-Benítez, P., Carranza-García, M., Luna-Romera, J.M. & Riquelme, J.C. (2020) Temporal convolutional networks applied to energy-related time series forecasting. Applied Sciences 10(7), 2322, doi: 10.3390/app10072322.
- 60. Le, D., Keren, G., Chan, J., Mahadeokar, J., Fuegen, C. & Seltzer, M.L. (2021) Deep shallow fusion for RNN-T personalization. IEEE Spoken Language Technology Workshop (SLT), pp. 251–257, doi: 10.1109/ SLT48900.2021.9383560.
- 61. Leard, B. & McConnell, V. (2020) Progress and potential electric vehicles to reduce carbon emissions. Report. [Online]. Available from: https://www.rff.org/publications/ reports/potential-role-and-impact-evs-us-decarbonizationstrategies/ [Accessed: November 22, 2023].
- 62. Ledna, C., Muratori, M., Yip, A., Jadun, P. & Hoehne, C. (2022) Decarbonizing Medium- & Heavy-Duty On-Road Vehicles: Zero-Emission Vehicles Cost Analysis. Technical Report, Golden, CO (United States), doi: 10.2172/ 1854583.
- 63. Letnik, T., Marksel, M., Luppino, G., Bardi, A. & Božičnik, S. (2018) Review of policies and measures for sustainable and energy efficient urban transport. Energy 163, pp. 245–257, doi: 10.1016/j.energy.2018.08. 096.
- 64. Li, C., Dong, Z., Chen, G., Zhou, B., Zhang, J. & Yu, X. (2021) Data-driven planning of electric vehicle charging infrastructure: A case study of Sydney, Australia. IEEE Transactions on Smart Grid 12(4), pp. 3289–3304, doi: 10.1109/ TSG.2021.3054763.
- 65. Li, H.X., Edwards, D.J., Hosseini, M.R. & Costin, G.P. (2020) A review on renewable energy transition in Australia: An updated depiction. Journal of Cleaner Production 242, 118475, doi: 10.1016/j.jclepro.2019.118475.
- 66. Li, J., Liu, Z. & Wang, X. (2022) Public charging station localization and route planning of electric vehicles considering the operational strategy: A bi-level optimizing approach. Sustainable Cities and Society 87, 104153, doi: 10.1016/j.scs.2022.104153.
- 67. Li, J., Rombaut, E. & Vanhaverbeke, L. (2021) A systematic review of agent-based models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated simulation models. Computers, Environment and Urban Systems 89, 101686, doi: 10.1016/j. compenvurbsys.2021.101686.
- 68. Li, J., Wang, F. & He, Y. (2020) Electric vehicle routing problem with battery swapping considering energy consumption and carbon emissions. Sustainability 12(24), 10537, doi: 10.3390/su122410537.
- 69. Liao, W., Bak-Jensen, B., Radhakrishna Pillai, J., Wang, Y. & Wang, Y. (2022) A review of graph neural networks and their applications in power systems. Journal of Modern Power Systems and Clean Energy 10(2), pp. 345–360, doi: 10.35833/MPCE.2021.000058.
- 70. Ling, S., Ma, S. & Jia, N. (2022) Sustainable urban transportation development in China: A behavioral perspective. Frontiers of Engineering Management 9(1), pp. 16–30, doi: 10.1007/s42524-021-0162-4.
- 71. Liu, P., Wang, J., Sangaiah, A., Xie, Y. & Yin, X. (2019) Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 11(7), 2058, doi: 10.3390/su11072058.
- 72. Liu, T.-Y. & Su, C.-W. (2021) Is transportation improving urbanization in China? Socio-Economic Planning Sciences 77, 101034, doi: 10.1016/j.seps.2021.101034.
- 73. Liu, W., Liang, Y., Bao, X., Qin, J. & Lim, M.K. (2022) China’s logistics development trends in the post COVID-19 era. International Journal of Logistics Research and Applications 25(6), pp. 965–976, doi: 10.1080/13675567.2020. 1837760.
- 74. Liu, Y., Cruz-Morales, P., Zargar, A., Belcher, M.S., Pang, B., Englund, E., Dan, Q., Yin, K. & Keasling, J.D. (2021) Biofuels for a sustainable future. Cell 184(6), pp. 1636–1647, doi: 10.1016/j.cell.2021.01.052.
- 75. Ma, Y., Liu, A., Egodawatta, P., McGree, J. & Goonetilleke, A. (2017) Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. Science of The Total Environment 579, pp. 202–211, doi: 10.1016/j. scitotenv.2016.11.015.
- 76. Majumdar, A. & Gupta, M. (2019) Recurrent transform learning. Neural Networks 118, pp. 271–279, doi: 10.1016/j. neunet.2019.07.003.
- 77. Marusin, A., Marusin, A. & Ablyazov, T. (2019) Transport infrastructure safety improvement based on digital technology implementation. Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019), Atlantis Press, Paris, France, doi: 10.2991/icdtli-19.2019.61.
- 78. Miele, A., Axsen, J., Wolinetz, M., Maine, E. & Long, Z. (2020) The role of charging and refuelling infrastructure in supporting zero-emission vehicle sales. Transportation Research Part D: Transport and Environment 81, 102275, doi: 10.1016/j.trd.2020.102275.
- 79. Modi, Y., Teli, R., Mehta, A., Shah, K. & Shah, M. (2022) A comprehensive review on intelligent traffic management using machine learning algorithms. Innovative Infrastructure Solutions 7(1), 128, doi: 10.1007/s41062- 021-00718-3.
- 80. Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, R., Götschi, T., Panis, L.I., Kahlmeier, S. & Nieuwenhuijsen, M. (2015) Health impact assessment of active transportation: A systematic review. Preventive Medicine 76, pp. 103–114, doi: 10.1016/j.ypmed.2015.04.010
- 81. Muratori, M., Borlaug, B., Ledna, C., Jadun, P. & Kailas, A. (2023) Road to zero: Research and industry perspectives on zero-emission commercial vehicles. iScience 26(5), 106751, doi: 10.1016/j.isci.2023.106751.
- 82. Naegler, T., Sutardhio, C., Weidlich, A. & Pregger, T. (2021) Exploring long-term strategies for the german energy transition ‒ A review of multi-sector energy scenarios. Renewable and Sustainable Energy Transition 1, 100010, doi: 10.1016/j.rset.2021.100010.
- 83. Nama, M., Nath, A., Bechra, N., Bhatia, J., Tanwar, S., Chaturvedi, M. & Sadoun, B. (2021) Machine learning‐ based traffic scheduling techniques for intelligent transportation system: Opportunities and challenges. International Journal of Communication Systems 34(9), doi: 10.1002/ dac.4814.
- 84. Nan, S., Tu, R., Li, T., Sun, J. & Chen, H. (2022) From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus. Energy 261, 125188, doi: 10.1016/j.energy.2022.125188.
- 85. Nespoli, A., Ogliari, E. & Leva, S. (2023) User behavior clustering based method for EV charging forecast. IEEE Access 11, pp. 6273–6283, doi: 10.1109/ACCESS. 2023.3235952.
- 86. Ning, Z., Zhang, K., Wang, X., Obaidat, M.S., Guo, L., Hu, X., Hu, B., Guo, Y., Sadoun, B. & Kwok, R.Y.K. (2021) Joint computing and caching in 5G-envisioned Internet of vehicles: A deep reinforcement learning-based traffic control system. IEEE Transactions on Intelligent Transportation Systems 22(8), pp. 5201–5212, doi: 10.1109/ TITS.2020.2970276.
- 87. Noussan, M., Raimondi, P.P., Scita, R. & Hafner, M. (2020) The role of green and blue hydrogen in the energy transition ‒ A technological and geopolitical perspective. Sustainability 13(1), 298, doi: 10.3390/su13010298.
- 88. Pan, S., Zhou, W., Piramuthu, S., Giannikas, V. & Chen, C. (2021) Smart city for sustainable urban freight logistics. International Journal of Production Research 59(7), pp. 2079–2089, doi: 10.1080/00207543.2021. 1893970.
- 89. Paulauskas, V., Henesey, L., Plačiene, B., Jonkus, M., Paulauskas, D., Barzdžiukas, R., Kaulitzky, A. & Simutis, M. (2022) Optimizing transportation between sea ports and regions by road transport and rail and inland waterway transport means including ‘last mile’ solutions. Applied Sciences 12(20), 10652, doi: 10.3390/ app122010652.
- 90. Pineda-Jaramillo, J., Barrera-Jiménez, H. & MesaArango, R. (2022) Unveiling the relevance of traffic enforcement cameras on the severity of vehicle–pedestrian collisions in an urban environment with machine learning models. Journal of Safety Research 81, pp. 225–238, doi: 10.1016/j.jsr.2022.02.014.
- 91. Pulvirenti, L., Rolando, L. & Millo, F. (2023) Energy management system optimization based on an LSTM deep learning model using vehicle speed prediction. Transportation Engineering 11, 100160, doi: 10.1016/j. treng.2023.100160.
- 92. Qin, Y., Luo, H., Zhao, F., Wang, C., Wang, J. & Zhang, Y. (2019) Toward transportation mode recognition using deep convolutional and long short-term memory recurrent neural networks. IEEE Access 7, pp. 142353–142367, doi: 10.1109/ACCESS.2019.2944686.
- 93. Rajendran, S. & Srinivas, S. (2020) Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transportation Research Part E: Logistics and Transportation Review 143, 102090, doi: 10.1016/j.tre.2020.102090.
- 94. Rana, A., Dumka, A., Singh, R., Panda, M.K., Priyadarshi, N. & Twala, B. (2022) Imperative role of machine learning algorithm for detection of Parkinson’s disease: Review, challenges and recommendations. Diagnostics 12(8), 2003, doi: 10.3390/diagnostics12082003.
- 95. Ren, S., Hao, Y. & Wu, H. (2023) Digitalization and environment governance: does internet development reduce environmental pollution? Journal of Environmental Planning and Management 66(7), pp. 1533–1562, doi: 10.1080/0964 0568.2022.2033959.
- 96. Ribeiro, A.H., Tiels, K., Aguirre, L.A. & Schön, T. (2020) Beyond exploding and vanishing gradients: analysing RNN training using attractors and smoothness. International Conference on Artificial Intelligence and Statistics, PMLR, pp. 2370–2380.
- 97. Ritchie, H. & Roser, M. (2021) Transport. [Online]. Available from: https://ourworldindata.org/transport [Accessed: November 22, 2023].
- 98. Ritchie, H., Samborska, V. & Roser, M. (2023) Urbanization. [Online]. Available from: https://ourworldindata.org/ urbanization [Accessed: November 22, 2023].
- 99. Rixhon, X., Limpens, G., Coppitters, D., Jeanmart, H. & Contino, F. (2021) The role of electrofuels under uncertainties for the Belgian energy transition. Energies 14(13), 4027, doi: 10.3390/en14134027.
- 100. Rocha Filho, G.P., Meneguette, R.I., Torres Neto, J.R., Valejo, A., Weigang, L., Ueyama, J., Pessin, G. & Villas, L.A. (2020) Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Ad Hoc Networks 107, 102265, doi: 10.1016/j.adhoc.2020.102265.
- 101. Rosales-Tristancho, A., Brey, R., Carazo, A.F. & Brey, J.J. (2022) Analysis of the barriers to the adoption of zero-emission vehicles in Spain. Transportation Research Part A: Policy and Practice 158, pp. 19–43, doi: 10.1016/j.tra.2022.01.016.
- 102. Ruiz, L., Gama, F. & Ribeiro, A. (2020) Gated graph recurrent neural networks. IEEE Transactions on Signal Processing 68, pp. 6303–6318, doi: 10.1109/TSP.2020.3033962.
- 103. Sahoo, B.B., Jha, R., Singh, A. & Kumar, D. (2019) Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica 67(5), pp. 1471–1481, doi: 10.1007/s11600-019- 00330-1.
- 104. Sajedian, I., Kim, J. & Rho, J. (2019) Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsystems & Nanoengineering 5(1), 27, doi: 10.1038/s41378-019-0069-y
- 105. Saud, A.S. & Shakya, S. (2020) Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE. Procedia Computer Science 167, pp. 788–798, doi: 10.1016/j.procs.2020.03. 419.
- 106. Shabana, Mohmmad, S., Shaik, M.A., Mahender, K., Kanakam, R. & Yadav, B.P. (2020) Average response time (ART): Real-time traffic management in VFC enabled smart cities. IOP Conference Series: Materials Science and Engineering 981, 022054, doi: 10.1088/1757- 899X/981/2/022054.
- 107. Shamsi, H., Haghi, E., Tran, M.-K., Walker, S., Raahemifar, K. & Fowler, M. (2022) Traffic NOx pollution prediction and health cost estimation using machine learning: A case study of Toronto, Canada. Journal of Energy and Power Technology 04(04), pp. 1–27, doi: 10.21926/jept.2204043.
- 108. Sharapiyeva, M.D., Duissekul, K., Gulmira, N. & Zhanna, K. (2019) Energy efficiency of transport and logistics infrastructure: The example of the Republic of Kazakhstan. International Journal of Energy Economics and Policy 9(5), pp. 331–338, doi: 10.32479/ijeep. 8204.
- 109. Sheikh, M.S. & Liang, J. (2019) A comprehensive survey on VANET security services in traffic management system. Wireless Communications and Mobile Computing 2019, pp. 1–23, doi: 10.1155/2019/2423915.
- 110. Singh, A., Dargar, S.K., Gupta, A., Kumar, A., Kumar Srivastava, A., Srivastava, M., Kumar Tiwari, P. & Ullah, M.A. (2022) Evolving long short-term memory network-based text classification. Computational Intelligence and Neuroscience 2022, pp. 1–11, doi: 10.1155/2022/4725639.
- 111. Song, A., Yang, X., Ni, L., Liu, C., Yao, Y. & Pan, L. (2022) Optimization analysis of the emergency logistics identification method based on the deep learning model under the background of big data. Wireless Communications and Mobile Computing 2022, pp. 1–8, doi: 10.1155/2022/2463035.
- 112. Su, H., Zio, E., Zhang, J., Xu, M., Li, X. & Zhang, Z. (2019) A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model. Energy 178, pp. 585–597, doi: 10.1016/j.energy.2019.04.167.
- 113. Sun, C., Li, H. & Ma, L. (2023) Speech emotion recognition based on improved masking EMD and convolutional recurrent neural network. Frontiers in Psychology 13, doi: 10.3389/fpsyg.2022.1075624.
- 114. Sun, L., Zhang, T., Liu, S., Wang, K., Rogers, T., Yao, L. & Zhao, P. (2021) Reducing energy consumption and pollution in the urban transportation sector: A review of policies and regulations in Beijing. Journal of Cleaner Production 285, 125339, doi: 10.1016/j.jclepro.2020.125339.
- 115. Tainio, M., Jovanovic Andersen, Z., Nieuwenhuijsen, M.J., Hu, L., de Nazelle, A., An, R., Garcia, L.M.T., Goenka, S., Zapata-Diomedi, B., Bull, F. & de Sá, T.H. (2021) Air pollution, physical activity and health: A mapping review of the evidence. Environment International 147, 105954, doi: 10.1016/j.envint.2020.105954.
- 116. Teter, J. & Voswinkel, F. (2023) Transport. [Online]. Available from: https://www.iea.org/energy-system/ transport [Accessed: November 22, 2023].
- 117. Tian, J., Yu, L., Xue, R., Zhuang, S. & Shan, Y. (2022) Global low-carbon energy transition in the post-COVID-19 era. Applied Energy 307, 118205, doi: 10.1016/j. apenergy.2021.118205.
- 118. .van Triel, F. & Lipman, T.E. (2020) Modeling the future California electricity grid and renewable energy integration with electric vehicles. Energies 13(20), 5277, doi: 10.3390/ en13205277.
- 119. Tu, Z., Qiao, L., Nowak, R., Lv, H. & Lv, Z. (2022) Digital twins-based automated pilot for energy-efficiency assessment of intelligent transportation infrastructure. IEEE Transactions on Intelligent Transportation Systems 23(11), pp. 22320–22330, doi: 10.1109/TITS.2022.3166585
- 120. .Ullah, S., Mahmood, T. & Khan, M.Z. (2022) Energy efficiency and energy rebound, intensity, and output effects in transport sector of Pakistan. Environmental Science and Pollution Research 29(50), pp. 75402–75416, doi: 10.1007/ s11356-022-21052-w.
- 121. Umar, M., Ji, X., Kirikkaleli, D. & Xu, Q. (2020) COP21 Roadmap: Do innovation, financial development, and transportation infrastructure matter for environmental sustainability in China? Journal of Environmental Management 271, 111026, doi: 10.1016/j.jenvman.2020.111026.
- 122. Vanegas Cantarero, M.M. (2020) Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research & Social Science 70, 101716, doi: 10.1016/j.erss.2020.101716.
- 123. Vlachas, P.R., Pathak, J., Hunt, B.R., Sapsis, T.P., Girvan, M., Ott, E. & Koumoutsakos, P. (2019) Forecasting of spatio-temporal chaotic dynamics with recurrent neural networks: A comparative study of reservoir computing and backpropagation algorithms. ArXiv Preprint ArXiv:1910.05266, Vol. 42.
- 124. Vlachas, P.R., Pathak, J., Hunt, B.R., Sapsis, T.P., Girvan, M., Ott, E. & Koumoutsakos, P. (2020) Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics. Neural Networks 126, pp. 191–217, doi: 10.1016/j.neunet.2020.02.016.
- 125. Wang, W. & Wang, J. (2021) Determinants investigation and peak prediction of CO2 emissions in China’s transport sector utilizing bio-inspired extreme learning machine. Environmental Science and Pollution Research 28(39), pp. 55535–55553, doi: 10.1007/s11356-021-14852-z.
- 126. Wang, Z., Peng, X., Xia, A., Shah, A.A., Huang, Y., Zhu, X., Zhu, X. & Liao, Q. (2022) The role of machine learning to boost the bioenergy and biofuels conversion. Bioresource Technology 343, 126099, doi: 10.1016/j. biortech.2021.126099.
- 127. Weerakody, P.B., Wong, K.W., Wang, G. & Ela, W. (2021) A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing 441, pp. 161–178, doi: 10.1016/j.neucom.2021.02.046.
- 128. Welch, T.F. & Widita, A. (2019) Big data in public transportation: a review of sources and methods. Transport Reviews 39(6), pp. 795–818, doi: 10.1080/01441647.2019.1616849.
- 129. Wu, S., Roberts, K., Datta, S., Du, J., Ji, Z., Si, Y., Soni, S., Wang, Q., Wei, Q., Xiang, Y., Zhao, B. & Xu, H. (2020) Deep learning in clinical natural language processing: a methodical review. Journal of the American Medical Informatics Association 27(3), pp. 457–470, doi: 10.1093/ jamia/ocz200.
- 130. Xiong, J. & Xu, D. (2021) Relationship between energy consumption, economic growth and environmental pollution in China. Environmental Research 194, 110718, doi: 10.1016/j.envres.2021.110718.
- 131. Yan, S., de Bruin, K., Dennehy, E. & Curtis, J. (2021) Climate policies for freight transport: Energy and emission projections through 2050. Transport Policy 107, pp. 11–23, doi: 10.1016/j.tranpol.2021.04.005.
- 132. Yang, G. (2019) Wide feedforward or recurrent neural networks of any architecture are gaussian processes. Advances in Neural Information Processing Systems 32.
- 133. Yang, W., Zhang, X., Lei, Q., Shen, D., Xiao, P. & Huang, Y. (2020) Lane position detection based on long short-term memory (LSTM). Sensors 20(11), 3115, doi: 10.3390/ s20113115.
- 134. Yi, Z., Liu, X.C., Wei, R., Chen, X. & Dai, J. (2022) Electric vehicle charging demand forecasting using deep learning model. Journal of Intelligent Transportation Systems 26(6), pp. 690–703, doi: 10.1080/15472450.2021.1966627.
- 135. Yuan, M., Thellufsen, J.Z., Lund, H. & Liang, Y. (2021) The electrification of transportation in energy transition. Energy 236, 121564, doi: 10.1016/j.energy.2021.121564.
- 136. Zhang, M., Sun, M., Bi, D. & Liu, T. (2020) Green logistics development decision-making: Factor identification and hierarchical framework construction. IEEE Access 8, pp. 127897–127912, doi: 10.1109/ACCESS.2020.3008443.
- 137. Zhang, R. (2020) The role of the transport sector in energy transition and climate change mitigation: insights from an integrated assessment model. Transport and Energy Research, pp. 15–30, doi: 10.1016/B978-0-12-815965- 1.00002-8.
- 138. Zhang, T., Qiu, Y., Ding, R., Yin, J., Cao, Y. & Du, Y. (2023) Coupling coordination and influencing factors of urban spatial accessibility and economic spatial pattern in the New Western Land-Sea Corridor. Environmental Science and Pollution Research 30(19), pp. 54511–54535, doi: 10.1007/s11356-023-26121-2.
- 139. Zhou, R., Liu, F. & Gravelle, C.W. (2020) Deep learning for modulation recognition: A survey with a demonstration. IEEE Access 8, pp. 67366–67376.
- 140. Zhu, X., Lin, Y., He, Y., Tsui, K.-L., Chan, P.W. & Li, L. (2022) Short-term nationwide airport throughput prediction with graph attention recurrent neural network. Frontiers in Artificial Intelligence 5, doi: 10.3389/frai.2022. 884485.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e534a6b-db83-42df-bf77-acd07fc8e3d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.