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Abstract

The paper presents a performance analysis of a selected few rough set–based classification
systems. They are hybrid solutions designed to process information with missing values.
Rough set-–based classification systems combine various classification methods, such
as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks
with the rough set theory. When all input values take the form of real numbers, and
they are available, the structure of the classifier returns to a non–rough set version. The
performance of the four systems has been analysed based on the classification results
obtained for benchmark databases downloaded from the machine learning repository of
the University of California at Irvine.
Keywords: rough sets, support vector machines, fuzzy systems, neural networks

1 Introduction

The Pawlak rough set theory [24, 25] is a
tool allowing to approximate sets in the space in
which particular objects have a limited description.
Thus, groups of various objects are indistinguish-
able. They form equivalence classes. The theory
operates only on the whole equivalence classes and
defines the lower and upper sets approximations.

In practice, any description of any object is lim-
ited to certain sets of features. The theory allows
us to evaluate sets of features using certain indica-
tors, e.g. the quality of approximation and, conse-
quently, to choose the most effective set of features
in the description for a given purpose. Formally, in
space U with elements described by features ci ∈ Q,
the equivalence class is defined as follows
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[x̂]P̃ =
{

x ∈U : x̂P̃x
}

. (1)

where P̃ is a relation dependent on set P ⊆ Q — a
set of selected or available features. Two elements
in U are in relation P̃ when they have the same
values of all features belonging to P. The set of
the omitted features or the features with unavailable
(missing) values is defined as G, thus P∪G = Q. In
consequence, the lower and upper approximations
of any set X have the following forms

P̃X = {x ∈U : [x]P̃ ⊆ X}, (2)

P̃X = {x ∈U : [x]P̃ ∩X ̸= /0}. (3)

In such approximation space, various classifi-
cation systems can be defined. They make the de-
cision, not for a single object but the whole equiva-
lence class. Thus, they do not give a single answer
but a scope of answers for all possible objects in a
given equivalence class. It is a direct consequence
of the assumption that the objects in an equivalence
class are indistinguishable, although they vary.

In this paper, we investigate the performance of
the rough sets–based hybrid classification systems
developed recently in [21]. It is worth noting that
the concept of combining the rough sets theory with
various machine learning algorithms has been ex-
plored in the literature not only in [21] , see e.g.
[1, 7, 8, 11, 14, 16, 17, 26, 29]. However, prior the
work [21] the proposed solutions most often boiled
down to the use of the theory of approximate sets at
particular stages of design (e.g. learning, designing
rules, initial processing of pattern data), of the deci-
sion system or used in independent elements of data
processing (e.g. preprocessing, post processing).

Rough set–based classification systems anal-
ysed in [21], and in this article, are characterized
by the use of elements of the rough set theory con-
cept during the classification process. The devel-
oped Rough set–based classification Systems use
directly the abstraction class (e.g. input data), ap-
proximate set (e.g. the neighbour in the rough k–
nearest neighbour classifier and the result of clas-
sification in each of the systems), or approximate
set in the sense of Dubois and Prade [3, 4]. The
works published so far [21, 22] presented the con-
cept of rough set–based classification Systems, to-
gether with specific examples of such rough support

vector machines, a rough k–nearest neighbour clas-
sifier, a rough neural network, and a rough fuzzy
system. Individual The publications described their
operation as independent classifiers [18, 19, 22], el-
ements of an iterative system [21] or elements of
assemblies [9, 10, 21, 23]. The research results
presented classification tasks in which the number
of conditional attributes usually did not exceed 10.
An analysis of the time consumption of individual
systems has never been presented. This paper fills
in these gaps. It presents new and unpublished re-
sults of the performance of all the above–mentioned
rough set–based classification systems for two clas-
sification tasks in the field of banking, in which
the number of conditional attributes is 20 and 23.
The new results are presented in the form of tables
and then compared with the previous results in joint
charts. The study also compared the results of mea-
surements of the decision–making time of individ-
ual systems.

The summarized results show that a specific
number of conditional attributes does not notice-
ably affect the ability to classify in the absence of
values of these attributes. Other, as yet unexplored
factors play a role here. Time measurements indi-
cate, however, that a slight advantage of the effec-
tiveness of the rough k–nearest neighbour classifier
is due to a very high processing time by this al-
gorithm. The time is 100 times longer than in the
case of other systems, which essentially eliminates
the rough k–nearest neighbour classifier from many
applications. From this perspective, rough support
vector machines and a rough neural network, de-
serve attention. Especially the latter, because sim-
ple two– and three–layer feed–forward networks
were used in the experiments.

The main contributions of this paper can be
summarized as follows:

– The results of the operation of four systems and
for databases larger than before have been pre-
sented. These systems are

– a rough support vector machine,

– a rough k–nearest neighbour classifier,

– a rough neural network,

– a rough fuzzy system.

– The classification time for above four rough set–
based classification systems was compared.
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– Through intensive simulations, which results are
given in Tables 1–4, the classification perfor-
mance (as a function of the number of missing
value) has been analysed for a different number
of conditional attributes taken into account.

The paper is organized as follows. Section 2 con-
tains a brief description of the basic version of se-
lected rough set–based classification systems, i.e.
rough support vector machines, a rough k–nearest
neighbour classifier, a rough neural network, and a
rough fuzzy system. More details have been pre-
sented in the works already published [18, 19, 20,
21, 22].

The classification systems described in Section
3 have been tested using widely available selected
benchmarks. The details of the investigation pro-
cedure are presented in Section 3. The results are
shown and discussed in Section 4. The new results
have been compiled with the results from the pre-
vious investigations. The paper ends with Conclu-
sions, which also contain a few remarks and plans
for further research.

2 Preliminaries

The rough set–based classification systems con-
sidered in the paper have been described in detail in
[21] and [22]. All systems have been defined using
a common form of input and output data as well as
notation. Thus, they are compatible and can substi-
tute each other if needed. The individual properties
of particular systems can be combined in homoge-
neous or hybrid ensembles and the iterative model.

The input data represent state or object x un-
der classification which is described by vector v =
[v1,v2, . . . ,vn] ∈V . Individual values vi remain real
values or can be substituted by intervals vi = [vi,vi]
or even vi = [vmin,vmax] in the case of a miss-
ing value. The output is expressed by intervals[
z j,z j,

]
for each j–th class or hypothesis, where

j = 1, . . . ,N. Intervals
[
z j,z j

]
are reduced to the

final decision. There are many methods of type re-
duction [5, 21, 28]. Here, referring to the rough set
theory, the following is suggested

x ∈




Pos(ω j) if z j ≥
1
2 and z j >

1
2

Neg(ω j) if z j <
1
2 and z j ≤ 1

2

Bn(ω j) otherwise.

(4)

Assigning element x to the positive region of set
ω j is the same as classifying the element to this
set, i.e. x ∈ ω j. Assigning the object to the neg-
ative region (Neg(ω j)) means that the object does
not belong to the set, i.e. x /∈ ω j. The last case
(x ∈ Bn(ω j)) occurs when an unequivocal classifi-
cation is not possible.

2.1 Rough support vector machines

Construction of the classification algorithm un-
der investigation is an implementation of the origi-
nal Support Vector Machine proposed by Vladimir
Vapnik [30]. The original version processes input
data in the form of a vector of values, whereas the
rough version of support vector machines processes
equivalence classes, instead. As it has been de-
rived in [22], the answer of the rough support vec-
tor machines is given by two bounds of interval
[z(τ),z(τ)], i.e.

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v∗(τ))+w0

)
(5)

and

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v

∗(τ))+w0

)
, (6)

where K is a non–linear kernel function, val-
ues v∗(τ) = [v∗1(τ), . . . ,v∗n(τ)] and v∗(τ) =
[v∗1(τ), . . . ,v∗n(τ)] meet the following conditions

K
(
vrT

ref,v∗(τ)
)
= inf

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (7)

K
(
vrT

ref,v
∗(τ)

)
= sup

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (8)

and v̂(τ) = [v̂1(τ), . . . , v̂n(τ)], but for features ci ∈ P
value v̂i is just equal to vi(τ). In general, an analyt-
ical determination of values v∗(τ) and v∗(τ) may
not be possible. Then, it is necessary to use alterna-
tive methods, e.g. the Monte Carlo sampling. In the
case of the linear kernel, we have a rather simple
solution

v∗i(τ) =

{
vi(τ) if wi > 0
vi(τ) if wi < 0

(9)

v∗i (τ) =

{
vi(τ) if wi < 0
vi(τ) if wi > 0.

(10)
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2.2 Rough k–nearest neighbour classifier

The original k–nearest neighbour algorithm [2]
consists of two main steps. The first one involves
selecting the k size neighbourhood of the sam-
ple under classification out of reference samples
ϒk (x(τ)). The second one consists in determining
the most numerous class from this neighbourhood.
In [21] the concept of the k–nearest neighbour clas-
sifier has been extended by certain elements of the
rough set theory in both steps. In the case of miss-
ing values or, in general, interval values, object
x(τ)which needs to be classified is described by
the vector of intervals v(τ) = [v1(τ), . . . ,vn(τ)] as
well as reference samples xr

ref which are described
by vector vr

ref = [vr
ref1, . . . ,v

r
refn]. Thus, the distance

between them becomes also an interval, whose left
and right bounds are calculated as follows

ρ (x(τ),xr
ref) = inf

vi(τ)∈vi(τ),vr
refi∈vi(τ)

∥v(τ),vr
ref∥ , (11)

ρ (x(τ),xr
ref) = sup

vi(τ)∈vi(τ),vr
refi∈vi(τ)

∥v(τ),vr
ref∥ . (12)

The obtained intervals are approximations of
real distances ρ (x(τ),xr

ref). Thus, the order of dis-
tances and, consequently, belonging to neighbour-
hood ϒk (x(τ)) are not unambiguous. The answer is
the approximation of neighbourhood ϒk (x(τ)) by a
rough set consisting of lower ϒk (x(τ)) and upper
ϒk (x(τ)) approximation of set ϒk (x(τ)). The ap-
proximations are defined as follows [21]

xr
ref ∈ ϒk (x(τ))⇔{

xr′
ref ∈ Xref : ρ

(
x(τ),xr′

ref

)
≤ ρ

(
x(τ),xr

ref

)}
≤ k

(13)
xr

ref ∈ ϒk (x(τ))⇔{
xr′

ref ∈ Xref : ρ
(
x(τ),xr′

ref

)
≤ ρ

(
x(τ),xr

ref

)}
≤ k

(14)
where Ω is the cardinality of set Ω. Finally, the al-
gorithm checks the most numerous class from all
possible neighbours ϒk (x(τ)) which meet

ϒk (x(τ))⊆ ϒk (x(τ))⊆ ϒk (x(τ)) . (15)

The formal description of the final result is pre-
sented in detail in [21]. However, the algorithm is
realised in the following two steps

1. sorting the left and right bounds of distances
ρ (x(τ),xr

ref) and ρ (x(τ),xr
ref) for all xr

ref ∈

ϒk (x(τ)), and denoting them as sequence
ρ1,ρ2, . . .,

2. determining the most numerous class for each
interval [ρk,ρk+1].

The final result is also in the form of rough
sets. Thus, when class ω j is most numerous in at
least one interval [ρk,ρk+1], object x(τ) which is
being classified belongs to the upper approximation
of the class. When the class is most numerous in
all intervals [ρk,ρk+1], object x(τ) belongs to the
lower approximation of class ω j, i.e. positive re-
gion Pos(ω j). When the class is not most numerous
in any interval [ρk,ρk+1], object x(τ) belongs to the
negative region of class — Neg(ω j).

2.3 Rough neural network

The rough feedforward neural network de-
scribed in [21] is based on a variation of the Lingras
rough neuron [12, 13]. In general, the neural net-
work is non–linear and non–monotonic. However,
a single neuron with a monotonic activation func-
tion can be treated as a monotonic block. Thanks to
this, certain assumptions have been met. Then, for
the input information given in the form of interval[
v(l)i ,v(l)i

]
, where i = 1, . . . ,n, the j–th neuron in l–

th layer obtains the activation level also in the form
of interval

[
s(l)j ,s(l)j

]
. The left and right bounds are

calculated as follows

s(l)j =
N(l−1)

∑
i=0

i : w(l)
ji >0

w(l)
ji v(l)i +

N(l−1)

∑
i=0

i : w(l)
ji <0

w(l)
ji v(l)i , (16)

s(l)j =
N(l−1)

∑
i=0

i : w(l)
ji >0

w(l)
ji v(l)i +

N(l−1)

∑
i=0

i : w(l)
ji <0

w(l)
ji v(l)i . (17)

For non–decreasing activation function f , the out-
put of the neuron is given by interval

[
y(l)j ,y(l)j

]

where
y(l)

j
= f

(
s(l)j

)
, (18)

y(l)j = f
(

s(l)j

)
. (19)

The output of the last layer is an output of the net-
work, thus

[
z j,z j

]
=
[
y(L)j ,y(L)j

]
.
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2.2 Rough k–nearest neighbour classifier

The original k–nearest neighbour algorithm [2]
consists of two main steps. The first one involves
selecting the k size neighbourhood of the sam-
ple under classification out of reference samples
ϒk (x(τ)). The second one consists in determining
the most numerous class from this neighbourhood.
In [21] the concept of the k–nearest neighbour clas-
sifier has been extended by certain elements of the
rough set theory in both steps. In the case of miss-
ing values or, in general, interval values, object
x(τ)which needs to be classified is described by
the vector of intervals v(τ) = [v1(τ), . . . ,vn(τ)] as
well as reference samples xr

ref which are described
by vector vr

ref = [vr
ref1, . . . ,v

r
refn]. Thus, the distance

between them becomes also an interval, whose left
and right bounds are calculated as follows

ρ (x(τ),xr
ref) = inf

vi(τ)∈vi(τ),vr
refi∈vi(τ)

∥v(τ),vr
ref∥ , (11)

ρ (x(τ),xr
ref) = sup

vi(τ)∈vi(τ),vr
refi∈vi(τ)

∥v(τ),vr
ref∥ . (12)

The obtained intervals are approximations of
real distances ρ (x(τ),xr

ref). Thus, the order of dis-
tances and, consequently, belonging to neighbour-
hood ϒk (x(τ)) are not unambiguous. The answer is
the approximation of neighbourhood ϒk (x(τ)) by a
rough set consisting of lower ϒk (x(τ)) and upper
ϒk (x(τ)) approximation of set ϒk (x(τ)). The ap-
proximations are defined as follows [21]

xr
ref ∈ ϒk (x(τ))⇔{

xr′
ref ∈ Xref : ρ

(
x(τ),xr′

ref

)
≤ ρ

(
x(τ),xr

ref

)}
≤ k

(13)
xr

ref ∈ ϒk (x(τ))⇔{
xr′

ref ∈ Xref : ρ
(
x(τ),xr′

ref

)
≤ ρ

(
x(τ),xr

ref

)}
≤ k

(14)
where Ω is the cardinality of set Ω. Finally, the al-
gorithm checks the most numerous class from all
possible neighbours ϒk (x(τ)) which meet

ϒk (x(τ))⊆ ϒk (x(τ))⊆ ϒk (x(τ)) . (15)

The formal description of the final result is pre-
sented in detail in [21]. However, the algorithm is
realised in the following two steps

1. sorting the left and right bounds of distances
ρ (x(τ),xr

ref) and ρ (x(τ),xr
ref) for all xr

ref ∈

ϒk (x(τ)), and denoting them as sequence
ρ1,ρ2, . . .,

2. determining the most numerous class for each
interval [ρk,ρk+1].

The final result is also in the form of rough
sets. Thus, when class ω j is most numerous in at
least one interval [ρk,ρk+1], object x(τ) which is
being classified belongs to the upper approximation
of the class. When the class is most numerous in
all intervals [ρk,ρk+1], object x(τ) belongs to the
lower approximation of class ω j, i.e. positive re-
gion Pos(ω j). When the class is not most numerous
in any interval [ρk,ρk+1], object x(τ) belongs to the
negative region of class — Neg(ω j).

2.3 Rough neural network

The rough feedforward neural network de-
scribed in [21] is based on a variation of the Lingras
rough neuron [12, 13]. In general, the neural net-
work is non–linear and non–monotonic. However,
a single neuron with a monotonic activation func-
tion can be treated as a monotonic block. Thanks to
this, certain assumptions have been met. Then, for
the input information given in the form of interval[
v(l)i ,v(l)i

]
, where i = 1, . . . ,n, the j–th neuron in l–

th layer obtains the activation level also in the form
of interval

[
s(l)j ,s(l)j

]
. The left and right bounds are

calculated as follows

s(l)j =
N(l−1)

∑
i=0

i : w(l)
ji >0

w(l)
ji v(l)i +

N(l−1)

∑
i=0

i : w(l)
ji <0

w(l)
ji v(l)i , (16)

s(l)j =
N(l−1)

∑
i=0

i : w(l)
ji >0

w(l)
ji v(l)i +

N(l−1)

∑
i=0

i : w(l)
ji <0

w(l)
ji v(l)i . (17)

For non–decreasing activation function f , the out-
put of the neuron is given by interval

[
y(l)j ,y(l)j

]

where
y(l)

j
= f

(
s(l)j

)
, (18)

y(l)j = f
(

s(l)j

)
. (19)

The output of the last layer is an output of the net-
work, thus

[
z j,z j

]
=
[
y(L)j ,y(L)j

]
.
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2.4 Rough fuzzy system

An in–depth presentation of the rough fuzzy
systems in the form analysed in the paper can be
found in [21]. This book offers also different
versions of such systems. The simplest one ap-
plies Mamdani reasoning and DCOG defuzzifica-
tion. Thus, the knowledge of the system is reduced
to the rules in the following form

Rr : IF v is Ar THEN
m∧

j=1

z j = zr
j (20)

The output in the form of interval
[
z j,z j

]
is calcu-

lated according to the following two formulas

z j =

N
∑

r=1
r : zr

j=1

N
S

k=1
k : zk

j=1

µAk
L
(v)

N
∑

r=1

N
S

k=1
k : zk

j=zr
j

µAk
L
(v)

(21)

and

z j =

N
∑

r=1
r : zr

j=1

N
S

k=1
k : zk

j=1

µAk
U
(v)

N
∑

r=1

N
S

k=1
k : zk

j=zr
j

µAk
U
(v)

, (22)

where

Ar
L =

{
P̃Ar gdy zr

j = 1

P̃Ar gdy zr
j = 0

(23)

and

Ar
U =

{
P̃Ar gdy zr

j = 1
P̃Ar gdy zr

j = 0.
(24)

3 Investigation procedure

All rough set–based classification systems re-
minded above have been examined using the two
benchmark databases freely available on the ma-
chine learning repository of the University of Cal-
ifornia at Irvine [15]. They are ”default of credit
card clients Data Set” and ”South German Credit
(UPDATE) Data Set”. The first one contains
30,000 instances described by 24 numerical at-
tributes (including n = 23 conditional attributes and
m = 1 decision attribute). The second one contains
1,000 instances described by 21 attributes (n = 20
conditional and m = 1 decision). In both original

sets, there is no missing value. During the investiga-
tion, the missing values were simulated by eliminat-
ing the data using previously defined patterns that
take into account all possible numbers of missing
values. In the case of 1 and n−1 missing values, all
n possible combinations have been tested. For the
other numbers of the missing values, random yet
varied patterns have been prepared. Testing all pos-
sible combinations of the missing values for 20 and
more conditional attributes would, as for the time
being, take more than a lifetime if such testing were
to be conducted with the use of computer systems
of today. The separate patterns of the missing val-
ues have been prepared for particular databases and
remained without any changes for all classification
systems under investigation.

Each dataset has been divided into 10 subsets in
order to perform a 10–fold cross–validation proce-
dure. In each stage, 9 various subsets were merged
and treated as a set of reference samples. They were
used to select support vectors in the SVM algo-
rithm, just as reference samples in k–nearest neigh-
bour classifiers, to learn neural networks, and to ex-
tract the knowledge in the form of rules for fuzzy
systems.

In every cross–validation stage, a set consisting
of 9 merged subsets containing the reference sam-
ples as well as a single 10th subset used as a testing
set were applied to test classification system.

4 Results of the investigations

4.1 Effectiveness of classification

The results obtained in the investigations have
been presented in two ways. In the first one, Fig-
ures 1–4 contain the results for a single classifica-
tion system and all benchmark datasets (DCCC —
Default of Credit Card Clients’ Classification, SGC
— South German Credit Classification, GI — Glass
Identification, BCW — Breast Cancer Wisconsin,
WC — Wine, PID — Pima Indian Diabetes, Iris —
Fisher’s Iris), the learning (lrn) and the testing (tst)
sets. This allows us to compare the consequences of
the missing data for the problems described by var-
ious numbers of features (conditional) classified by
particular rough set–based classification systems.
In the other one, Figures 5 and 6 show the results
for a single benchmark (data set) and all classifi-
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cation systems (RSVM – rough support vector ma-
chine, RkNN — rough k–nearest neighbour, RNN
— rough neural network, RFuzz — rough fuzzy
system). This allows us to compare the perfor-
mance of particular rough set–based classification
systems. The results are also presented in the form
of Tables 1–10.

Table 1. The results of the default of credit card
clients’ classification test using the rough support

vector classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 71.1/70.7 28.9/29.3 0.0/0.0
1 11.2/11.4 2.6/2.6 86.2/86.0
2 2.5/2.6 0.7/0.7 96.7/96.7
3 0.8/0.8 0.4/0.4 98.8/98.8
4 0.8/0.8 0.3/0.3 98.9/98.9
5 0.8/0.7 0.2/0.2 99.0/99.1

6-9 0.0/0.0 0.1/0.1 99.9/99.9
10-23 0.0/0.0 0.0/0.0 100.0/100.0

Table 2. The results of the South German Credit
classification test using the rough support vector

classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/72.8 0.0/27.2 0.0/0.0
1 31.0/23.2 0.0/3.5 69.0/73.3
2 16.6/13.6 0.0/1.8 83.4/84.6
3 10.1/8.8 0.0/1.3 89.9/89.9
4 7.8/6.5 0.0/1.0 92.2/92.4
5 5.7/4.5 0.0/0.7 94.3/94.8
6 3.7/2.9 0.0/0.5 96.4/96.6
7 2.9/2.6 0.0/0.5 97.1/96.9
8 2.6/2.3 0.0/0.5 97.4/97.3
9 1.9/1.7 0.0/0.4 98.1/97.9
10 1.5/1.3 0.0/0.4 98.5/98.3

11-12 1.2/1.1 0.0/0.4 98.8/98.5
13 1.1/1.0 0.0/0.4 98.9/98.6
14 1.1/1.0 0.0/0.4 98.9/98.7

15-19 0.7/0.7 0.0/0.2 99.3/99.1
20 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 1. The results of the classification using the
rough support vector machines

Table 3. The results of the default of credit card
clients’ classification test using the rough k-nearest

neighbour algorithm

Number Decisions [%]of missing
values correct incorrect no decision

0 71.8/61.5 28.2/38.5 0.0/0.0
1 59.4/58.1 27.7/30.6 12.9/11.2
2 53.0/57.1 26.0/28.6 21.0/14.3
3 44.0/52.2 18.6/21.8 37.4/26.0
4 43.2/47.5 17.9/15.6 39.0/36.9
5 40.7/44.9 17.7/9.7 41.5/45.4
6 35.5/44.7 16.4/7.1 48.1/48.1
7 32.6/38.6 7.3/0.5 60.1/60.9
8 26.8/35.2 2.7/0.0 70.5/64.8
9 26.3/28.5 0.0/0.0 73.7/71.5
10 23.2/19.6 0.0/0.0 76.8/80.4
11 20.3/10.9 0.0/0.0 79.7/89.1
12 19.2/4.4 0.0/0.0 80.8/95.6
13 14.1/0.0 0.0/0.0 85.9/100.0
14 6.6/0.0 0.0/0.0 93.4/100.0
15 1.8/0.0 0.0/0.0 98.2/100.0

16-23 0.0/0.0 0.0/0.0 100.0/100.0
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cation systems (RSVM – rough support vector ma-
chine, RkNN — rough k–nearest neighbour, RNN
— rough neural network, RFuzz — rough fuzzy
system). This allows us to compare the perfor-
mance of particular rough set–based classification
systems. The results are also presented in the form
of Tables 1–10.

Table 1. The results of the default of credit card
clients’ classification test using the rough support
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Number Decisions [%]of missing
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4 0.8/0.8 0.3/0.3 98.9/98.9
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Table 2. The results of the South German Credit
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Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/72.8 0.0/27.2 0.0/0.0
1 31.0/23.2 0.0/3.5 69.0/73.3
2 16.6/13.6 0.0/1.8 83.4/84.6
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Figure 1. The results of the classification using the
rough support vector machines

Table 3. The results of the default of credit card
clients’ classification test using the rough k-nearest

neighbour algorithm

Number Decisions [%]of missing
values correct incorrect no decision

0 71.8/61.5 28.2/38.5 0.0/0.0
1 59.4/58.1 27.7/30.6 12.9/11.2
2 53.0/57.1 26.0/28.6 21.0/14.3
3 44.0/52.2 18.6/21.8 37.4/26.0
4 43.2/47.5 17.9/15.6 39.0/36.9
5 40.7/44.9 17.7/9.7 41.5/45.4
6 35.5/44.7 16.4/7.1 48.1/48.1
7 32.6/38.6 7.3/0.5 60.1/60.9
8 26.8/35.2 2.7/0.0 70.5/64.8
9 26.3/28.5 0.0/0.0 73.7/71.5
10 23.2/19.6 0.0/0.0 76.8/80.4
11 20.3/10.9 0.0/0.0 79.7/89.1
12 19.2/4.4 0.0/0.0 80.8/95.6
13 14.1/0.0 0.0/0.0 85.9/100.0
14 6.6/0.0 0.0/0.0 93.4/100.0
15 1.8/0.0 0.0/0.0 98.2/100.0

16-23 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 2. The results of the classification using the
rough k-nearest neighbour algorithm

Table 4. The results of the South German Credit
classification test using the rough k–nearest

neighbour algorithm

Number Decisions [%]of missing
values correct incorrect no decision

0 78.7/67.8 21.3/32.3 0.0/0.0
1 66.6/64.5 22.5/24.2 10.9/11.3
2 60.9/63.6 23.3/21.7 15.9/14.7
3 49.4/60.6 17.3/19.2 33.3/20.2
4 47.3/56.9 11.3/18.3 41.4/24.8
5 42.3/49.4 4.0/12.2 53.7/38.4
6 35.9/45.0 0.0/7.7 64.1/47.4
7 32.0/37.1 0.0/3.5 68.0/59.4
8 29.7/34.5 0.0/0.0 70.3/65.5
9 26.1/26.6 0.0/0.0 73.9/73.4
10 22.0/25.2 0.0/0.0 78.0/74.8
11 17.3/23.8 0.0/0.0 82.7/76.2
12 13.8/16.5 0.0/0.0 86.2/83.5
13 10.9/10.8 0.0/0.0 89.1/89.2
14 5.0/7.6 0.0/0.0 95.0/92.4
15 3.1/0.3 0.0/0.0 96.9/99.7

16-20 0.0/0.0 0.0/0.0 100.0/100.0

Table 5. The results of the default of credit card
clients’ classification test using the rough neural

network no 1

Number Decisions [%]of missing
values correct incorrect no decision

0 70.8/69.8 29.2/30.2 0.0/0.0
1 23.5/27.2 5.4/8.1 71.1/64.7
2 6.2/7.2 0.8/2.2 93.0/90.6
3 1.8/2.3 0.2/0.8 98.0/96.9
4 0.4/0.6 0.0/0.2 99.6/99.2
5 0.1/0.1 0.0/0.0 99.9/99.8

6–23 0.0/0.0 0.0/0.0 100.0/100.0

Table 6. The results of the default of credit card
clients’ classification test using the rough neural

network no 2

Number Decisions [%]of missing
values correct incorrect no decision

0 75.1/71.1 24.9/28.9 0.0/0.0
1 1.8/6.1 0.3/1.4 97.9/92.5
2 0.0/0.1 0.0/0.0 100.0/99.8

3-23 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 3. The results of classification using the
rough neural networks
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Table 7. The results of the South German Credit
classification test using the rough neural network

no 1

Number Decisions [%]of missing
values correct incorrect no decision

0 86.7/65.9 13.3/34.1 0.0/0.0
1 34.2/32.3 3.9/9.8 61.9/57.9
2 7.4/9.8 0.7/1.8 91.9/88.4
3 1.2/2.1 0.1/0.3 98.7/97.6
4 0.1/0.3 0.0/0.0 99.9/99.6

5-20 0.0/0.0 0.0/0.0 100.0/100.0

Table 8. The results of the South German Credit
classification test using the rough neural network

no 2

Number Decisions [%]of missing
values correct incorrect no decision

0 90.9/67.9 9.1/32.2 0.0/0.0
1 15.5/18.2 1.3/4.0 83.2/77.8
2 0.9/1.5 0.1/0.2 99.0/98.3
3 0.0/0.1 0.0/0.0 100.0/99.9

4-20 0.0/0.0 0.0/0.0 100.0/100.0

Table 9. The results of the default of credit card
clients’ classification test using the rough fuzzy

system

Number Decisions [%]of missing
values correct incorrect no decision

0 82.4/81.1 17.6/18.9 0.0/0.0
1 58.4/57.5 10.5/11.4 31.1/31.1
2 34.8/34.3 5.5/6.2 59.6/59.5
3 19.6/19.4 2.9/3.3 77.5/77.4
4 8.5/8.3 1.1/1.3 90.4/90.4
5 3.3/3.2 0.3/0.4 96.4/96.4
6 0.8/0.8 0.1/0.1 99.1/99.1
7 0.1/0.1 0.0/0.0 99.9/99.9

8-23 0.0/0.0 0.0/0.0 100.0/100.0

Table 10. The results of the South German Credit
classification test using the rough fuzzy system

Number Decisions [%]of missing
values correct incorrect no decision

0 68.4/66.6 31.6/33.4 0.0/0.0
1 52.6/51.3 21.8/22.9 25.6/25.9
2 34.5/33.9 12.3/14.1 53.2/52.0
3 22.5/22.6 7.4/8.5 70.2/68.9
4 14.7/14.8 4.6/5.5 80.7/79.7
5 8.6/8.8 2.4/3.0 89.0/88.2
6 4.8/4.8 1.3/1.7 93.8/93.4
7 2.3/2.3 0.6/0.8 97.1/96.9
8 1.2/1.2 0.3/0.4 98.5/98.4
9 0.4/0.3 0.1/0.1 99.5/99.6
10 0.2/0.2 0.0/0.0 99.7/99.8
11 0.1/0.1 0.0/0.0 99.9/99.9

12-20 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 4. The results of the classification using the
rough fuzzy systems
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Table 7. The results of the South German Credit
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values correct incorrect no decision

0 82.4/81.1 17.6/18.9 0.0/0.0
1 58.4/57.5 10.5/11.4 31.1/31.1
2 34.8/34.3 5.5/6.2 59.6/59.5
3 19.6/19.4 2.9/3.3 77.5/77.4
4 8.5/8.3 1.1/1.3 90.4/90.4
5 3.3/3.2 0.3/0.4 96.4/96.4
6 0.8/0.8 0.1/0.1 99.1/99.1
7 0.1/0.1 0.0/0.0 99.9/99.9

8-23 0.0/0.0 0.0/0.0 100.0/100.0

Table 10. The results of the South German Credit
classification test using the rough fuzzy system

Number Decisions [%]of missing
values correct incorrect no decision

0 68.4/66.6 31.6/33.4 0.0/0.0
1 52.6/51.3 21.8/22.9 25.6/25.9
2 34.5/33.9 12.3/14.1 53.2/52.0
3 22.5/22.6 7.4/8.5 70.2/68.9
4 14.7/14.8 4.6/5.5 80.7/79.7
5 8.6/8.8 2.4/3.0 89.0/88.2
6 4.8/4.8 1.3/1.7 93.8/93.4
7 2.3/2.3 0.6/0.8 97.1/96.9
8 1.2/1.2 0.3/0.4 98.5/98.4
9 0.4/0.3 0.1/0.1 99.5/99.6
10 0.2/0.2 0.0/0.0 99.7/99.8
11 0.1/0.1 0.0/0.0 99.9/99.9

12-20 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 4. The results of the classification using the
rough fuzzy systems
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Figure 5. The results of the default of credit card
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Figure 6. The results of the South German Credit
classification

4.2 Classification run–time

Computational complexity of particular types
of classification systems varies. An extremely high
complexity of the rough k–nearest neighbour clas-
sifier was already noticed in [21]. The complex-
ity of neural networks and fuzzy systems, as well
as rough set–based versions, strictly depends on the
number of neurons and the number of rules, respec-
tively. The number of desired support vectors in the
SVM algorithm depends on the number of condi-
tional features. However, this data parameter affects
the time which a system needs to process the data.

To compare the time of a classification process
realised by the particular classification systems, the
systems have been implemented in a common envi-
ronment with a common data structure and each of
them did multiple runs on a single CPU core. The
time needed for preparing particular classification
systems is not analysed as in the authors’ opinion
cannot be compared. As is known, the SVM prepa-
ration comes down to selecting the support vectors
[30]. In the case of k–nearest neighbour algorithm
all reference samples must be just located in the
memory [2]. The learning of neural network is a
stochastic process [27, 31], but creating the rules
from data was realised using deterministic algo-
rithm [6, 7].

Figure 7. Fragment of the application window that
implements the examined classification systems

Table 11. Classification process time

Rough set–based Time relative
classification system to the slowest

system [%]
Rough support vector machines 0.011
Rough k–nearest neighbour 100.000
Rough neural network 0.127
Rough fuzzy system 1.051
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Figure 8. Classification process time

Figure 7 shows a fragment of the correspond-
ing author’s application window that implements
the examined classification systems. The applica-
tion has been developed to test the flexibly config-
ured ensembles of various rough set–based classi-
fication systems and the iterative mode of a single
system [21]. This is the reason why the illustration
shows some additional elements. However, it can
also work with a single classification system. In or-
der not to make the results dependent on specific
implementation and a hardware platform, the mea-
sured times have been presented according to the
slowest system, i.e. the rough k–nearest neighbour
with the value of 100%. The values obtained by all
systems under investigation have been presented in
Table 11 and Figure 8.

Conclusions

The paper contains the results of extended in-
vestigations of the rough set–based classification
systems proposed in previous works [21, 22]. The
investigations have been processed for benchmarks
with more than 20 conditional attributes. Such a
number allows for the testing of a representative
number of missing values patterns in an acceptable
time and, together with the earlier results, it allows
us to examine the effect of missing the value for
various numbers of the considered features.

The consequence of inaccessibility of input val-
ues in the classification process strictly depends on
the redundancy level in the data. An important step
in designing any decision system is selecting condi-
tional features in order to limit the number of fea-

tures and redundancy in input data. The rule gen-
eration processes also minimize the redundancy in
the resultant rule set and the input vector. This sig-
nificantly reduces the ability of make a decision in
the case of missing values. Despite this, the results
indicate that redundancy still exists in both the data
and rules. Obviously, the redundancy is not visible
in all features to the same extent and, as the result,
the relevance of particular parts of input data varies.
It can be observed in the detailed results, which are
not presented in the paper. The main results, pre-
sented in Section 4.1, show that the loss of a sin-
gle value is felt more in the case of a small num-
ber of available values, and felt less in the case of a
higher number of available values. However, when
we compare the percentage loss of input data con-
cerning all considered features, we can see that the
number of unclassified samples is higher in the case
of the benchmark with a higher number of consid-
ered conditional features. It can be concluded that
in such cases, a single feature carries less informa-
tion and the level of redundancy is lower than in the
cases with a small number of features. It is espe-
cially visible for rough fuzzy classification systems,
where the redundancy has been capped also in the
rule set. It would be interesting to check the correla-
tion between the above observations and the signif-
icance of attributes calculated following Pawlak’s
rough sets theory.

The results indicate a weakness of the k–nearest
neighbour algorithm. The algorithm is extremely
simple, easy to implement, and very efficient. How-
ever, it needs a huge amount of resources, i.e. mem-
ory space and processor time. It is specifically evi-
dent when the double rough functionality has been
added to the algorithm. For this reason, the other
methods are more appropriate in real applications.
The rough k–nearest neighbour method must be re-
defined and optimized in future work.
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fication systems and the iterative mode of a single
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