PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of drying and granulation process conditions on the characteristics of micronutrient chelates granules

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluidized-bed spray granulation (FBSG) enables manufacturing particles with desired characteristics, including particle size distribution (PSD), density, or dust content. This study investigated the effect of selected factors on the granules obtained in a continuous FBSG of chelated fertilizers for foliar applications. The effect of surfactant addition to the solution sprayed into the bed and perturbations of operating parameters on PSD and granules morphology was studied. The experiments were supplemented with calculations based on a population balance equation (PBE). It was shown that granules manufactured with the tenside addition are more regular in shape, and thus less prone to mechanical wear. It was demonstrated that increasing rotational mill speed does contribute to a slight increase in the amount of dust, but in the long term, it does not disturb the regular agglomeration process. The computational results confirm that, despite the complexity of the process, its description with PBE is feasible.
Rocznik
Strony
40--49
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
  • Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
  • Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
autor
  • Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
Bibliografia
  • 1. Grünewald, G., Westhoff, B. & Kind, M. (2010). Fluidized bed spray granulation: nucleation studies with steady-state experiments. Dry. Technol. 28, 349–360. DOI: 10.1080/07373931003641495.
  • 2. Rieck, C., Bück, A. & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanisms in spray fluidized bed process. AIChE Jurnal 66, e16920. DOI: 10.1002/aic.16920.
  • 3. Iveson, S.M., Litster, J.D., Hapgood, K. & Ennis, B.J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39. DOI: 10.1016/S0032-5910(01)00313-8.
  • 4. Burggraeve, A., Monteyne, T., Vervaet, C., Remon, J.P. & De Beer, T. (2013). Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review. Eur. J. Pharm. Biopharm. 83, 2–15. DOI: 10.1016/j.ejpb.2012.09.008.
  • 5. Michałek, B., Ochowiak, M., Bizon, K., Włodarczak, S., Krupińska, A., Matuszak, M., Boroń, D., Gierczyk, B. & Olszewski, R. (2021). Effect of adding surfactants to a solution of fertilizer on the granulation process. Energies 14(22), 7557. DOI: 10.3390/en14227557.
  • 6. Askarishahi, M., Maus, M., Schröder, D., Slade, D., Martinetz, M. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part I: Agglomeration in pilot scale process. Int. J. Pharm. 573, 118837. DOI: 10.1016/j.ijpharm.2019.118837.
  • 7. Askarishahi, M., Salehi, N.-S., Maus, M., Schröder, D., Slade, D. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part II: Eased process development via degree of wetness. Int. J. Pharm. 572, 118836. DOI: 10.1016/j. ijpharm.2019.118836.
  • 8. Saleh, K. & Guigon, P. (2007). Coating and encapsulation processes in powder technology. In Salman, A.D., Hounslow, M.J. & Seville, J.P.K. (Eds.), Granulation (pp. 323–375), Amsterdam, The Netherlands: Elsevier.
  • 9. Lister, J. & Ennis, B. (2004). The science and engineering of granulation processes. Dordrecht, The Netherlands: Springer-Science+Business Media.
  • 10. Kovalchuk, N.M., Simons, M.J.H. (2021). Surfactant-mediated wetting and spreading: Recent advances and applications. Curr. Opin. Colloid Interface 51, 101375. DOI: 10.1016/j. cocis.2020.07.004.
  • 11. Januszkiewicz, K., Mrozek-Niećko, A. & Różański, J. (2019). Effect of surfactants and leaf surface morphology on the evaporation time and coverage area of ZnIDHA. Plant Soil 434, 93–105. DOI: 10.1007/s11104-018-3785-4.
  • 12. Hemati, M., Cherif, R., Saleh, K., Pont, V. (2003). Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 130, 18–34. DOI: 10.1016/S0032-5910(02)00221-8.
  • 13. Zank, J., Kind, M. & Schlünder, E.-U. (2001). Particle growth in a continuously operated fluidized bed granulator. Dry. Technol. 19, 1755–1772. DOI: 10.1081/DRT-100107271.
  • 14. Kapur, P.C. & Fuerstenau D.W. (1969). Coalescence model for granulation. Ind. Eng. Chem. Process Des. Dev. 8, 56–62. DOI: 10.1021/i260029a010.
  • 15. Breuer, M. & Almohammed, N. (2015). Modelling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. Int. J. Multiph. Flow. 73, 171–206. DOI: 10.1016/j.ijmultiphaseflow.2015.03.018.
  • 16. PN-EN ISO7837-2000.
  • 17. PN-EN ISO 845:2000.
  • 18. ISO 12154:2014(E).
  • 19. Hounslow, M.J., Ryall, R.L. & Marshall, V.R. (1988). A discretized population balance for nucleation, growth, and aggregation. AIChE Jurnal 34, 1821–1832. DOI: 10.1002/aic.690341108.
  • 20. Vreman, A.W., Van Lare, C.E. & Hounslow, M.J. (2005). A basic population balance model for fluid bed spray granulation. Chem. Eng. Sci. 64, 4389–4398. DOI: 10.1016/j. ces.2009.07.010.
  • 21. Otto, R., Dürr, R. & Kienle, A. (2023). Stability of combined continuous granulation and agglomeration processes in a fluidized bed with sieve-mill-recycle. Processes 11, 473. DOI: 10.3390/pr1102047.
  • 22. Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M. & Mörl, L. (2002). Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling. Chem. Eng. Sci. 57, 4369–4390. DOI: 10.1016/S0009-2509(02)00352-4.
  • 23. Hounslow, M.J. (1990). A discretized population balance for continuous systems at steady state. AIChE J.36, 106–116. DOI: 10.1002/aic.690360113.
  • 24. Cronin, K., Ortiz, F.J., Ring, D. &Zhang, F. (2021). A new-time dependent rate constant of coalescence kernel for modelling of fluidized bed granulation. Powder Technol. 379, 321–334. DOI: 10.1016/j.powtec.2020.10.083.
  • 25. Otto, E., Dürr, R., Strenzke, G., Palis, S., Bück, A., Tsotsas, E. & Kienle, A. (2021). Kernel identification in continuous fluidized bed spray agglomeration from steady state data. Adv. Powder. Technol. 32, 2517–2529. DOI: 10.1016/j.apt.2021.05.028.
  • 26. Li, Z., Kessel, J., Grünewald, G., Kind, M. (2012). CFD simulation on drying and dust integration in fluidized bed spray granulation. Dry. Technol. 30, 1088–1098. DOI: 10.1080/07373937.2012.685672.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e513e93-f286-4c47-8b01-54c790d6f109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.