Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the effect of sintering parameters on electronic structure and physical properties of yttria-partially stabilized ZrO2 (YPSZ) commercial ceramics has been studied using the central composite design (CCD) method. The CCD method allows using empirical modelling with better fitting, by considering the interaction between both factors. Different temperature ranges and sintering times for processing of YPSZ ceramics have been used in order to evaluate the grain growth, hardness and volumetric shrinkage by the CCD method. X-ray diffraction patterns and Rietveld refinement data indicate that non-sintered YPSZ ceramics exhibits two phases related to tetragonal and monoclinic structures, while the sintered YPSZ ceramics exhibits a single phase related to a tetragonal structure. Moreover, the monoclinic structure presents zirconium (Zr) atoms coordinated to seven oxygen (O) atoms, while in the tetragonal structure Zr atoms are coordinated to eight O atoms. Field emission scanning electron microscopy images were employed to monitor the sintering and growth process. In addition, the response surfaces obtained from calculations presented the effect of thermal and kinetic variables on the physical properties such as average grain size, volumetric shrinkage and hardness of YPSZ ceramics.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
225--238
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- Departamento de Física, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- LIEC, Departamento de Química-Universidade Federal de Sao Carlos-UFSCar, P.O. Box 676, 13565-905, Sao Carlos, SP, Brazil
autor
- LSQM-Laboratório de Síntese Química de Materiais-DEMat, Universidade Federal do Rio Grande do Norte-UFRN, P.O. Box 1524, 59078-970, Natal, RN, Brazil
autor
- PPGQ-DQ-CCN-GERATEC-Universidade Estadual do Piauí, Joao Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI, Brazil
Bibliografia
- [1] ALI S.A., KARTHIGEYAN S., DEIVANAI M., MA R., J. Prosthodont., 34 (2014), 178.
- [2] DENRY I., KELLY J.R., Dent. Mater., 24 (2008), 299.
- [3] BIRKBY I., HARRISON P., STEVENS R., J. Eur. Ceram. Soc., 5 (1989), 37.
- [4] YANG C.C.T., WEI W.C.J., Wear, 242 (2000), 97.
- [5] KOHORST P., BORCHERS L., STREMPEL J., STIESCH M., HASSEL T., BACH F.W., HUBSCH C., Acta Biomater., 8 (2012), 1213.
- [6] CHRISTEL P., MEUNIER A., HELLER M., TORRE J.P., PEILLE C.N., J. Biomed. Mater. Res. A, 23 (1989), 45.
- [7] KUWABARA M., ASHIZUKA M., KUBOTA Y., TSUKIDATE T., J. Mater. Sci. Lett., 5 (1986), 7.
- [8] ABOUSHELIB M.N., KLEVERLAAN C.J., FEILZER A.J., J. Prosthodont., 17 (2008), 538.
- [9] UOA M., SJOREN G., SUNDH A., WATARI F., BERGMAN M., LERNER U., Dent. Mater., 19 (2003), 487.
- [10] ÖZKOL E., ZHANG W., EBERT J., TELLE R., J. Eur. Ceram. Soc., 32 (2012), 2193.
- [11] MUNOZ ´ -TABARES J.A., JIMÉNEZ-PIQUÉ E., REYESGASGA J., ANGLADA M., J. Eur. Ceram. Soc., 32 (2012), 3919.
- [12] MAZAHERI M., SIMCHI A., GOLESTANI-FARD F., J. Eur. Ceram. Soc., 28 (2008), 2933.
- [13] VLEUGELS J., YUAN Z.X., DER BIEST O.V., J. Eur. Ceram. Soc., 22 (2002), 873.
- [14] NOGIWA-VALDEZ A.A., RAINFORTH W.M., ZENG P., ROSS I.M., Acta Biomater., 9 (2013), 6226.
- [15] RAN S., VLEUGELS J., HUANG S., VANMEENSEL K., BLANK D.H.A., WINNUBST L., J. Eur. Ceram. Soc., 30 (2010), 899.
- [16] CHAIM R., Mat. Sci. Eng. A-Struct., 486 (2008), 439.
- [17] LI J., TANG Z., ZHANG Z., LUO S., Mater. Sci. Eng. B-Adv., 99 (2003), 321.
- [18] KIM M., LAINE R.M., J. Am. Ceram. Soc., 93 (2010), 709.
- [19] SAGEL-RANSIJN C.D., WINNUBST A.J.A., BURGGRAAF A.J., VERWEIJ H., J. Eur. Ceram. Soc., 17 (1996), 1133.
- [20] THEUNISSEN G.S.A.M., WINNUBST A.J.A., BURGGRAAF A.J., J. Eur. Ceram. Soc., 11 (1993), 315.
- [21] ASAR N.V., KORKMAZ T., GÜL E.B., Mater. Design., 31 (1993), 2540.
- [22] RASMUSSEN S.T., NGAJI-OKUMU W., BOENKE K., O’BRIEN W.J., Dent. Mater., 13 (1997), 43.
- [23] WANG H., LIAO Y., CHAO Y., LIANG X., Dent. Mater., 23 (2007), 1108.
- [24] HOLLAND T.B., ANSELMI-TAMBURINI U., QUACH D.V., TRAN T.B., MUKHERJEE A.K., J. Eur. Ceram. Soc., 32 (2012), 3667.
- [25] RAJ P.M., ODULENA A., CANNON W.R., Acta Mater., 50 (2002), 2559.
- [26] FAES A., FUERBRINGER J.M., MOHAMEDI D., HESSLER-WYSER A., CABOCHE G., VAN HERLE J., J. Power Sources, 196 (2011), 7058.
- [27] BASHIRI M., GERANMAYEH A.F., Sci. Iran., 18 (2011), 1600.
- [28] HANG Y., QU M., UKKUSURI S., Energ. Buildings, 43 (2011), 988.
- [29] HOLLEBEECK S., BORLON F., SCHNEIDER Y.J., LARONDELLE Y., ROGEZ H., Food Chem., 138 (2013), 1936.
- [30] ZHU Z., ZHANG G., LUO Y., RAN W., SHEN Q., Bioresource Technol., 112 (2012), 254.
- [31] SANI E., MERCATELLI L., SANS J.L., SCITI D., Sol. Energ. Mat. Sol. C., 140 (2015), 477.
- [32] PAN W., CHEN K., AI N., LÜ Z., JIANG S.P., J. Electrochem. Soc., 163 (2016), F106.
- [33] BALACHANDRAN M., DEVANATHAN S., MURALEEKRISHNAN R., BHAGAWAN S.S., Mater. Design., 35 (2012), 854.
- [34] GUARACHO V.V., KAMINARI N.M., PONTE M.J., PONTE H.A., J. Hazard. Mater., 172 (2009), 1087.
- [35] FANG Y., ZHANG Y., SONG J., FAN H., HU L., Mater. Design., 49 (2013), 421.
- [36] DILER E.A., IPEK R., Compos. Part B. Eng., 50 (2013), 371.
- [37] PONGSTABODEE S., MONYANON S., LUENGNARUEMITCHAI A., Int. J. Hydrogen. Energ., 37 (2012), 4749.
- [38] BAYHAN M., ÖNEL K., Mater. Design., 31 (2010), 3015.
- [39] SHEHZAD A., BASHIR M.J.K., SETHUPATHI S., YOUNUS M., LIM J.W., IJPAES., 6 (2016), 255.
- [40] DILER E.A., IPEK R., Compos. Part. B. Eng., 50 (2013), 371.
- [41] DILER E.A., IPEK R., Mat. Sci. Eng. A-Struct., 548 (2012), 43.
- [42] BADWAL S., CIACCHI F., GIAMPIETRO K., Solid State Ionics, 176 (2005), 169.
- [43] CASELLAS D., CUMBRERA F.L., SÁNCHEZ-BAJO F., FORSLING W., LLANES L., ANGLADA M., J. Eur. Ceram. Soc., 21 (2001), 765.
- [44] ASTM C1327 – 08 Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics.
- [45] SMITH D.K., NEWKIRK W., Acta Crystallogr., 18 (1965), 983.
- [46] BONDARS B., HEIDEMANE G., GRABIS J., LASCHKE K., BOYSEN H., SCHNEIDER J., FREY F., J. Mater. Sci., 30 (1995), 1621.
- [47] HUNTER B.A., HOWARD C.J., KIM D.J., Austr. J. Phys., 51 (1998), 539.
- [48] RIETVELD H.M., J. Appl. Crystallogr., 2 (1969), 65.
- [49] BISH D.L., POST J.E., Am. Mineral., 78 (1993), 932.
- [50] BORTOLOTTI M., LUTTEROTTI L., LONARDELLI I., J. Appl. Crystallogr., 42 (2009), 538.
- [51] LUTTEROTTI L., MATTHIES S., WENK H.R., SCHULTZ A.J., RICHARDSON J., J. Appl. Phys., 81 (1997), 594.
- [52] LUTTEROTTI L., CECCATO R., DAL MASCHIO R., PAGANI E., Mater. Sci. Forum., 278 – 281 (1998), 87.
- [53] MOMMA K., IZUMI F., J. Appl. Crystallogr., 44 (2011), 1272.
- [54] KUZ’MINOV Y.S., LOMONOVA E.E., OSIKO V.V., Cubic zirconia and skull melting, Intl. Science Pub, Cambridge, 2008.
- [55] PAKHARUKOVA V.P., MOROZ E.M., ZYUZIN D.A., ISHCHENKO A.V., DOLGIKH L.Y., STRIZHAK P.E., J. Phys. Chem. C., 119 (2015), 28828.
- [56] ZHANG X.J., LIU Z.P., J. Chem. Theory Comput., 11 (2015), 4885.
- [57] KOHARA S., SALMON P.S., Adv. Phys., 1 (2016), 640.
- [58] ZHAO X., VANDERBILT D., Phys. Rev. B., 65 (2002), 0751051.
- [59] IKENO H., KRAUSE M., HÖCHE T., PATZIG C., HU Y., GAWRONSKI A., TANAKA I., RÜSSE C., J. Phys.- Condens. Mat., 25 (2013), 165505.
- [60] YANG X., YANG L., LIN S., ZHOU R., J. Phys. Chem. C, 119 (2015), 6065.
- [61] GAUNT A.J., MAY I., COLLISON D., HOLMANA, K.T., POPE M.T., J. Mol. Struct., 656 (2003), 101.
- [62] BAI Y., DOU Y., XIE L.H., RUTLEDGE W., LI J.R., ZHOU H.C., Chem. Soc. Rev., 45 (2016), 2327.
- [63] CUNHA F.S., SCZANCOSKI J.C., NOGUEIRA I.C., OLIVEIRA DE V.G., LUSTOSA S.M.C., LONGO E., CAVALCANTE L.S., CrystEngComm, 17 (2015), 8207.
- [64] SINHAMAHAPATRA A., JEON J.P., KANG J., HAN B., YU J.S., Sci. Rep.-UK, 6 (2016), 27218.
- [65] RAHAMAN M.N., Sintering of Ceramics, CRC Press & Taylor and Francis Group, New York, 2008.
- [66] BADAPANDA T., ROUT S.K., CAVALCANTE L.S., SCZANCOSKI J.C., PANIGRAHI S., SINHA T.P., LONGO E., Mater. Chem. Phys., 121 (2010), 147.
- [67] CHENG K., ZHANG L., LU C., TIEU K., Sci. Rep.-UK, 6 (2016), 25427.
- [68] HOSOKAWA M., NOGI, K., NAITO, M., YOKOYAMA, T.U., Nanoparticle Technology Handbook., Elsevier, Amsterdam, 2008, p. 312.
- [69] BADAPANDA T., SENTHIL V., ROUT S.K., CAVALCANTE L.S., SIMÕES A.Z., SINHA T.P., PANIGRAHI S., DE JESUS M.M., LONGO E., VARELA J.A., Curr. Appl. Phys., 11 (2011), 1282.
- [70] MARQUES V.S., CAVALCANTE L.S., SCZANCOSKI J.C., ALCÂNTARA A.F.P., ORLANDI M.O., MORAES E., LONGO, E., VARELA J.A., SIU LI M., SANTOS M.R.M.C., Cryst. Growth Des., 10 (2010), 4752.
- [71] FÁBREGAS I.O., REINOSO M., OTAL E., KIM M., J. Eur. Ceram. Soc., 36 (2016), 2043.
- [72] SUBBANNA M., KAPUR P.C., PRADIP P., MALGHAN S.G., Ceram. Int., 27 (2001), 57.
- [73] POUCHLY V., MACA K., SHEN Z., J. Eur. Ceram. Soc., 33 (2013), 2275.
- [74] THEUNISSEN G.S.A.M., WINNUBST A.J.A., BURGGRAAF A.J., J. Eur. Ceram. Soc., 11 (1993), 315.
- [75] LUO J., STEVENS R., Ceram. Int., 25 (1999), 281.
- [76] BUNDSCHUH W., GAHR K.H.Z., Tribol. Int., 27 (1994), 97.
- [77] MARRO F.G., ANGLADA M., J. Eur. Ceram. Soc., 32 (2012), 317.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e4d5994-be07-4967-9358-39350a03d8bf