PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage and stability analysis of sandstone-type uranium ore body under physical and chemical action of leaching solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the typical sand-conglomerate uranium ore in north China was taken as the research object. The uniaxial compression and tensile tests of sand-conglomerate specimens under natural status and acidic solution status were used to research the compressive strength, tensile strength, Young’s modulus, cohesion and internal friction angle. Focusing on this type of uranium deposit, during the underground design of the in-situ leaching mining method, the three-dimensional finite element method was used to conduct a numerical simulation of the liquid collecting tunnel with different structural parameters of 10 m×2 m, 3 m×2 m, 2 m×2 m, and comprehensively analyse the vertical displacement, principal stress and plastic deformation zone changes of the tunnelbefore and after leaching. Based on the results, influenced by an acidic aqueous solution, the grain of the conglomerate became soft and secondary pores appeared, resulting in the superimposed effect of physical damage and chemical damage. Macroscopically, an obvious decrease was witnessed in mechanical property. Based on the stability and economy factor of three scenarios before and after leaching, the scenario was recommended as the experimental testing scenario, specifically, two longitudinal collecting tunnel were arranged along the strike of the orebody, with the size of 3 m×2 m and the width of the middle pillar of 4 m. The results of the numerical simulation are significant in guiding the design of underground in-situ leaching technology and determining the structural parameters of the deposit.
Rocznik
Strony
409--423
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Key Discipline Laborat ory for Nat ional Defensefor Biotechnology in Uranium Mining and Hydrometa llurgy, University of South China, China
  • China General Nuclear Power Group (CGN) Uranium Resources Co., Ltd, Beijing 100029, China
autor
  • China General Nuclear Power Group (CGN) Uranium Resources Co., Ltd, Beijing 100029, China
autor
  • Key Discipline Laborat ory for Nat ional Defensefor Biotechnology in Uranium Mining and Hydrometa llurgy, University of South China, China
autor
  • Key Discipline Laborat ory for Nat ional Defensefor Biotechnology in Uranium Mining and Hydrometa llurgy, University of South China, China
autor
  • China General Nuclear Power Group (CGN) Uranium Resources Co., Ltd, Beijing 100029, China
autor
  • Key Discipline Laborat ory for Nat ional Defensefor Biotechnology in Uranium Mining and Hydrometa llurgy, University of South China, China
autor
  • Key Discipline Laborat ory for Nat ional Defensefor Biotechnology in Uranium Mining and Hydrometa llurgy, University of South China, China
Bibliografia
  • [1] C.F. Zhang, B.S. Duan, R.S. Yang, Z.W. Yang, Z.R. Wang, Discussion on the mining method for a steep dip and unwatering sandstone uranium deposit in Xinjiang. Uranium Mining and Metallurgy 36 (4), 25 7(2017). DOI: http://doi.org/10.13426/j.cnki.yky.2017.04.004.
  • [2] J. Sun, Rheological Behavior of Geomaterials and Its Engineering Applications, China Architecture and Building Press, Beijing 1999.
  • [3] H.H. Hu, B. Ye, Experimental Study on Mechanical Properties of Rock Creep in Saturation. Chinese Journal of Rock Mechanics and Engineering 21 (12), 1791-1796 (2002). DOI: http://doi.org/10.3321/j.issn:1000-6915.2002.12.009.
  • [4] P. Li, J. Liu, G.H. Li, Experimental Study for Shear Strength Characteristics of Sandstone under Water-rock Interaction Effects. Rock and Soil Mechanics 32 (2), 380-386 (2011). DOI: http://doi.org/10.3969/j.issn.1000-7598.2011.02.010.
  • [5] J. Liu, L.P. Qiao, P. Li, Experimental Studies and Constitutive Model of Elastoplastic Mechanical Behaviours of Sandstone with Hydro-physicochemical Influencing Effects. Chinese Journal of Rock Mechanics and Engineering 28 (1), 21-29 (2009). DOI: http://doi.org/10.3969/j.issn.1000-7598.2011.02.010.
  • [6] L.S. Tang, S.J. Wang, Analysis of Mechanical and Quantitative Methods of Chemical Damage in Water-rock Interaction. Chinese Journal of Rock Mechanics and Engineering 21 (3), 314-319 (2002). DOI: http://doi.org/10.3321/j.issn:1000-6915.2002.03.004.
  • [7] L.S. Tang, P.C. Zhang, S.J. Wang, Testing Study on Effect of Chemical Action of Aqueous Solution on Crack Propagation in Rock. Chinese Journal of Rock Mechanics and Engineering 21 (6), 822-827 (2002). DOI: http://doi.org/10.3321/j.issn:1000-6915.2002.06.012.
  • [8] L.S. Tang, P.C. Zhang, S.J. Wang, Testing Study on Macroscopic Mechanics Effect of Chemical Action of Water on Rocks [J]. Chinese Journal of Rock Mechanics and Engineering 21 (4), 526-531 (2002). DOI: http://doi.org/10.3321/j.issn:1000-6915.2002.04.015.
  • [9] L.S. Tang, C.Y. Zhou, Analysis of Mechanism of Permeation and Hydrochemical Action Resulting in Failure of Loaded Rock Mass. Acta Scientiarum Naturalium Universitatis Sunyatseni 35 (6), 95-100 (1996).
  • [10] Q. Cui, X.T. Feng, Q. Xue, Mechanism Study of Porosity Structure Change of Sandstone under Chemical Corrosion. Chinese Journal of Rock Mechanics and Engineering 27 (6), 1209-1215 (2008). DOI: http://doi.org/10.3321/j.issn:1000-6915.2008.06.015.
  • [11] W. Wang, T.G. Liu, J. Lv, Experimental Study of Influence of Water-rock Chemical Interaction on Mechanical Characteristics of Sandstone. Chinese Journal of Rock Mechanics and Engineering 31 (2), 3607-3617 (2012).
  • [12] H.D. Jang, F.M. Qu, X.B. Liu, G.L. Zhang. Study on the Stability Evolution Law of Expansive Soft Rock Roadway Affected by Seasonal Wet-Dry Cycle. Archives of Mining Sciences 68 (1), 165-182 (2023). DOI: https://doi.org/10.24425/ams.2023.144323.
  • [13] J.X. Wang, H.H. Zhu, Y.Q. Tang, Fracture Mechanical Model and Hydrochemical-hydraulic Coupled Damage Evolution Equation of Limestone. Journal of Tongji University (Natural Science) 32 (10), 1320-1324 (2004). DOI: http://doi.org/10.3321/j.issn:0253-374X.2004.09.002.
  • [14] W.G. Li, X.P. Zhang, Y.M. Zhong, Formation Mechanism of Secondary Dissolved Pores in Arcose. Oil and Gas Geology 26 (2), 220-223 (2005).
  • [15] L.P. Qiao, J. Liu, X.T. Feng, Study on Damage Mechanism of Sandstone under Hydro-physico-chemical Effects. Chinese Journal of Rock Mechanics and Engineering 26 (10), 2117-2124 (2007). DOI: http://doi.org/10.3321/j.issn:1000-6915.2007.10.023.
  • [16] L.P. Qiao. Experimental-theoretical-numerical Studies of Elasto-plastic and Creep Property of Sandstone with Hydrophysico-chemical Influencing Effects. PhD thesis, Chinese Academy of Sciences, Wuhan, 2008.
  • [17] N. Li, Y.M. Zhu, B. Su, S. Gunterc, A Chemical Damage Model of Sandstone in Acid Solution. International Journal of Rock Mechanics and Mining Sciences 40 (2), 243-249 (2003). DOI: https://doi.org/10.1016/S1365-1609(02)00132-6.
  • [18] Z.H. Zhou, K.P. Hou, F.Y. Ren, Roof Stability Analysis of Sublevel Open Stope and Caving Mining Method. Journal of Mining and Safety Engineering 29 (4), 538-542 (2012).
  • [19] Z.H. Zhou, K.P. Hou, F.Y. Ren, Stability Analysis of Large-scale Mined-out Area and Its Control Methods in Paomaping Lead-zinc Deposit. Journal of Mining and Safety Engineering 30 (6), 863-867 (2013).
  • [20] G.Q. Tao, Q.Y. Ren, H. Luo, Stability Analysis of Stope in Pillarless Sublevel Caving. Rock and Soil Mechanics 32 (12), 3768-3779 (2011). DOI: https://doi.org/10.3969/j.issn.1000-7598.2011.12.038.
  • [21] J. Gong, N.L. Hu, X.D. Wang, Stability Analysis and Rock Movement Prediction of Stope Roof Below the Subsidence Area. Journal of Mining and Safety Engineering 32 (2), 337-342 (2015). DOI: https://doi.org/10.13545/j.cnki.jmse.2015.02.026.
  • [22] Y.P. Zhang, P. Cao, H.P. Yuan, Numerical Simulation on Stability of Complicated Goaf. Journal of Mining and Safety Engineering 27 (2), 233-238 (2010). DOI: https://doi.org/10.3969/j.issn.1673-3363.2010.02.019.
  • [23] Y.M. Song, H. Ren, H.L. Xu, D. An. Experimental Study on Deformation and Damage Evolution of a Mining Roadway with Weak Layer Rock under Compression-shear Load. Archives of Mining Sciences 66 (3), 351-368 (2021). DOI: https://10.24425/ams.2021.138593.
  • [24] A. Tajduś, K. Tajduś, Assessment of the Behaviour of Flysch Rock Mass During Tunnel Boring in the Primary Lining Using Indicators and Limit Values of Displacements and Deformations. Archives of Mining Sciences 67 (2), 355-376 (2022). DOI: https://doi.org/10.24425/ams.2022.141463.
  • [25] Z.Y. Liu, M.K. Qin, H.X. Liu, Meso-Cenozoic Orogeny in South Tianshan and the Resultant Superimposed Enrichment Effect on the Sawafuqi Uranium Deposit. Acta Geologica Sinica 90 (12), 3310-3323 (2016).
  • [26] Geological and Mineral Industry Standard Drafting Group. Test Rules for Physical and Mechanical Properties of Rock (DZ/T 0276-2015). Standards Press of China, Beijing 2015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e4c5de0-26bd-4403-9fea-f678818c6465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.