PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palmprint Recognition Using Gabor-Based Scale Orientation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various methods are used to obtain a superior palmprint recognition system. After selecting a palmprint image filter, using Gabor orientation scale pairs is an option to support the refinement of the verification process. Many researchers use the [8×5] pair for the value of the Gabor orientation scale in the field of palmprint recognition. However, from the experiments conducted, other Gabor pairs have more impact on system improvement. The problem is to get the most suitable value pairs for palmprint applications, so in this study, a comparison of seven kinds of Gabor pairs is carried out. This Gabor pair being compared applies using original images, PCA dimension reduction, and the Euclidean method. From the research that has been done, the pair of Gabor orientation scale [8×7] or image expansion of 56 will have the most significant impact compared to other pairs. Suppose the result of this Gabor pair is [8×7] by using other improvement systems, namely the 3W filter instead of the original image, KPCA to replace the PCA, and the cosine method in the matching method. In that case, it will increase the verification value by 99.611%. The trial value obtained can be an alternative method of choice for improving palmprint recognition.
Rocznik
Strony
641--646
Opis fizyczny
Bibliogr. 25 poz., fot., tab., wyk.
Twórcy
  • Faculty of Electrical Engineering, Universitas Muhammadiyah Surakarta, Pabelan, Indonesia
Bibliografia
  • [1] K. Bensid, D. Samai, F. Z. Laallam, and A. Meraoumia, “Deep learning feature extraction for multispectral palmprint identification,” Journal of Electronic Imaging, vol. 27, no. 3, pp. 1 – 11, 2018. [Online]. Available: https://doi.org/10.1117/1.JEI.27.3.033018
  • [2] N. Saini and A. Sinha, “Efficient fusion of face and palmprint in gabor filtered wigner domain,” International Journal of Biometrics, vol. 12, no. 3, pp. 301–316, 2020. [Online]. Available: https://www.inderscienceonline.com/doi/abs/10.1504/IJBM.2020.108482
  • [3] Y. Aberni, L. Boubchir, and B. Daachi, “Multispectral palmprint recognition: A state-of-the-art review,” 07 2017, pp. 793–797.
  • [4] C. L. Deepika, A. Kandaswamy, C. Vimal, and B. Satish, “Palmprint authentication using modified legendre moments,” Procedia Computer Science, vol. 2, pp. 164 – 172, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050910003510
  • [5] J. Sung, S.-Y. Bang, and S. Choi, “A bayesian network classifier and hierarchical gabor features for handwritten numeral recognition,” Pattern Recognition Letters, vol. 27, no. 1, pp. 66 – 75, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167865505001935
  • [6] H. jun Wang, H. nian Qi, and X. F. Wang, “A new Gabor based approach for wood recognition,” Neurocomputing, vol. 116, pp. 192–200, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2012.02.045
  • [7] Q. Li, X. Li, Z. Guo, and J. You, “Online personal verification by palmvein image through palmprint-like and palmvein information,” Neurocomputing, vol. 147, no. Supplement C, pp. 364 – 371, 2015, advances in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-Organizing Maps 2012 (WSOM 2012). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231214008224
  • [8] G. S. Badrinath and P. Gupta, “Palmprint based recognition system using phase-difference information,” Future Generation Computer Systems, vol. 28, no. 1, pp. 287–305, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2010.11.029
  • [9] M. Aykut and M. Ekinci, Kernel Principal Component Analysis of Gabor Features for Palmprint Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 685–694. [Online]. Available: https://doi.org/10.1007/978-3-642-01793-3_70
  • [10] Y. Xu, L. Fei, and D. Zhang, “Combining left and right palmprint images for more accurate personal identification,” IEEE Transactions on Image Processing, vol. 24, no. 2, pp. 549–559, Feb 2015.
  • [11] C. A. Perez, L. A. Cament, and L. E. Castillo, “Methodological improvement on local gabor face recognition based on feature selection and enhanced borda count,” Pattern Recognition, vol. 44, no. 4, pp. 951 – 963, 2011. [Online]. Available: //www.sciencedirect.com/science/article/pii/S0031320310005017
  • [12] Y. Xu, D. Zhang, and J.-Y. Yang, “A feature extraction method for use with bimodal biometrics,” Pattern Recognition, vol. 43, no. 3, pp. 1106–1115, 2010. [Online]. Available: http://dx.doi.org/10.1016/j. patcog.2009.09.013
  • [13] B. Zhang, W. Li, P. Qing, and D. Zhang, “Palm-print classification by global features,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 2, pp. 370–378, March 2013. [Online]. Available: http://dx.doi.org/10.1109/TSMCA.2012.2201465
  • [14] G. K. Ong Michael, T. Connie, and A. B. Jin Teoh, “A Contactless Biometric System Using Palm Print and Palm Vein Features,” in Advanced Biometric Technologies. InTech, aug 2011. [Online]. Available: http://dx.doi.org/10.5772/19337
  • [15] I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean distance matrices: Essential theory, algorithms, and applications,” IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 12–30, Nov 2015.
  • [16] M. Velasquez and P. Hester, “An analysis of multi-criteria decision making methods,” International Journal of Operations Research, vol. 10, pp. 56–66, 05 2013.
  • [17] A. Kumar and D. Zhang, “Palmprint authentication using multiple classifiers,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 5404, 2004, pp. 20–29.
  • [18] K. Sudhakar and P. Nithyanandam, “An accurate facial component detection using gabor filter,” Bulletin of Electrical Engineering and Informatics, vol. 6, no. 3, pp. 287–294, 2017.
  • [19] M. M. Hassan, H. I. Hussein, A. S. Eesa, and R. J. Mstafa, “Face recognition based on gabor feature extraction followed by fastica and lda,” Computers, Materials and Continua, vol. 68, no. 2, pp. 1637–1659, 2021.
  • [20] R. Hammouche, A. Attia, S. Akhrouf, and Z. Akhtar, “Gabor filter bank with deep autoencoder based face recognition system,” Expert Systems with Applications, p. 116743, 2022.
  • [21] X. Liang, J. Yang, G. Lu, and D. Zhang, “Compnet: Competitive neural network for palmprint recognition using learnable gabor kernels,” IEEE Signal Processing Letters, vol. 28, pp. 1739–1743, 2021.
  • [22] X. Liang, Z. Li, D. Fan, J. Li, W. Jia, and D. Zhang, “Touchless palmprint recognition based on 3d gabor template and block feature refinement,” Knowledge-Based Systems, vol. 249, p. 108855, 2022.
  • [23] V. Štruc and N. P. C, “Gabor-Based Kernel Partial-Least-Squares Discrimination Features for Face Recognition,” Informatica, vol. 20, no. 1, pp. 115–138, 2009. [Online]. Available: http://iospress.metapress.com/index/173723327G3J5823.pdf
  • [24] H. jun Wang, H. nian Qi, and X.-F. Wang, “A new gabor based approach for wood recognition,” Neurocomputing, vol. 116, pp. 192 – 200, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231212006881
  • [25] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 6, pp. 610–621, Nov 1973. [Online]. Available: http://dx.doi.org/10.1109/TSMC.1973.4309314
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e4c560e-4f3a-4a26-b392-487fbaac9e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.