PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas Nitriding of the Near-Beta-Titanium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research investigates the nitriding kinetics of the near-beta-titanium alloy of Ti-Al-Nb-Fe-Zr-Mo-V system at 750, 800, and 850°C in gaseous nitrogen at 105 Pa for 2, 4, and 8 h. The parabolic coefficient kp of the layer’s growth rate and the nitriding activation energy E are set as the kinetic parameters of the nitrided layer’s growth. The activation energy for the formation of a nitride layer is ~108 kJ/mol. The authors discuss the morphology of the nitride layers as well as their roughness and surface hardness. The study determines the effective diffusion coefficient for the growth of diffusion layers in the temperature range of 750...850°C: Def = D0 × exp (-E/RT), where D0 = 0.0177 m2/s; E = 215.7 kJ/mol. The friction coefficient of the disk from nearbeta-titanium alloy with a bronze block is lowered by significantly more than 10 times after gas nitriding, and the temperature in the friction zone is reduced by 2.5 times.
Twórcy
  • G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
  • G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
  • G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
autor
  • G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Department of Physics of Strength and Ductility of Inhomogeneous Alloys, 36 Academician Vernadsky Boulevard, 03142 Kyiv, Ukraine
autor
  • G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
  • G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
Bibliografia
  • [1] J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J. Fanning, State of the Art in Beta Titanium Alloys for Airframe Applications, JOM 67 (6), 1281-1303 (2015). DOI: https://doi.org/10.1007/s11837-015-1442-4
  • [2] H. Chang, L. Zhou, Current Situation of Titanium Research, Development and Applications in China, in: Proceedings of the 14th World Conference on Titanium (Ti 2019), MATEC Web of Conferences 321, 01001 (2020). DOI: https://doi.org/10.1051/matecconf/202032101001
  • [3] A. Alexandrov, New research and development of titanium production and application in the CIS, in: Proceedings of the 14th World Conference on Titanium (Ti 2019), MATEC Web of Conferences 321, 01002 (2020). DOI: https://doi.org/10.1051/matecconf/202032101002
  • [4] R.P. Kolli, A.A. Devaraj, A Review of Metastable Beta Titanium Alloys, Metals 8, 506 (2018). DOI: https://doi.org/10.3390/met8070506
  • [5] H. Dong, Tribological properties of titanium-based alloys, in: Surface Engineering of Light Alloys. Aluminium, Magnesium and Titanium Alloys. Woodhead Publishing Series in Metals and Surface Engineering. Woodhead Publishing, pp. 58-80 (2010). ISBN 978-1-84569-537-8.
  • [6] O. Tisov, M. Łępicka, Y. Tsybrii, A. Yurchuk, M. Kindrachuk, O. Dukhota, Duplex Aging and Gas Nitriding Process as a Method of Surface Modification of Titanium Alloys for Aircraft Applications, Metals 12, 100 (2022). DOI: https://doi.org/10.3390/met12010100
  • [7] T. Fraczek, R. Prusak, M. Ogórek, Z. Skuza, The Effectiveness of Active Screen Method in Ion Nitriding Grade 5 Titanium Alloy. Materials. 14, 3951 (2021). DOI: https://doi.org/10.3390/ma14143951
  • [8] A. Edrisy, Kh. Farokhzadeh, Plasma Nitriding of Titanium Alloys, In Plasma Science and Technology: Progress in Physical States and Chemical Reactions, edited by Tetsu Mieno, London: IntechOpen 2016. DOI: https://doi.org/10.5772/61937
  • [9] A.M. Kamat, S.M. Copley, A.E. Segall, J.A. Todd, Laser-Sustained Plasma (LSP) Nitriding of Titanium: A Review, Coatings 9, 283 (2019). DOI: https://doi.org/10.3390/coatings9050283
  • [10] S. Takesue, S. Kikuchi, H. Akebono, T. Morita, J. Komotori, Characterization of surface layer formed by gas blow induction heating nitriding at different temperatures and its effect on the fatigue properties of titanium alloy, Results in Materials 5, 100071 (2020). DOI: https://doi.org/10.1016/j.rinma.2020.100071
  • [11] J. Kim, W.J. Lee, H.W. Park, Mechanical properties and corrosion behavior of the nitriding surface layer of Ti-6Al-7Nb using large pulsed electron beam (LPEB), Journal of Alloys and Compounds (2016). DOI: https://doi.org/10.1016/j.jallcom.2016.04.060
  • [12] L.A. Dobrzański, K. Gołombek, K. Lukaszkowicz, Physical Vapor Deposition in Manufacturing, in: Handbook of Manufacturing Engineering and Technology, A.Y.C. Nee (ed.), Springer-Verlag London 2015. P. 2719-2754. DOI: https://doi.org/10.1007/978-1-4471-4670-4_29
  • [13] L.A. Dobrzanski, D. Pakula, M. Staszuk, Chemical Vapor Deposition in Manufacturing, in: Handbook of Manufacturing Engineering and Technology, A.Y.C. Nee (ed.), Springer-Verlag London 2015. P. 2755-2803. DOI: https://doi.org/10.1007/978-1-4471-4670-4_29
  • [14] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Tech. 200, 2192-2207 (2005). DOI: https://doi.org/10.1016/j.surfcoat.2004.07.115
  • [15] S.X. Liang, L.X. Yin, X.Y. Liu, X.X. Wu, M.Z. Ma, R.P. Liu, Kinetics of thermodiffusion of TZ20 titanium alloy gas-nitride within temperature of 500°C-650°C. J. Alloy Compd. 734, 172-178 (2018). DOI: https://doi.org/10.1016/j.jallcom.2017.11.052
  • [16] Ch. Yang, J. Liu, Intermittent vacuum gas nitriding of TB8 titanium alloy, Vacuum. 163, 52-58 (2019). DOI: https://doi.org/10.1016/j.vacuum.2018.11.059
  • [17] V.М. Fedirko, І.М. Pohrelyuk, О.H. Luk’yanenko, S.М. Lavrys’, М.V. Kindrachuk, О.І. Dukhota, О.V. Tisov, V.V. Zahrebel’nyi, Thermodiffusion Saturation of the Surface of VT22 Titanium Alloy from a Controlled Oxygen-Nitrogen-Containing Atmosphere in the Stage of Aging, Materials Science 53, 691-701 (2018). DOI: https://doi.org/10.1007/s11003-018-0125-z
  • [18] I.M. Pohrelyuk, M.V. Kindrachuk, S.M. Lavrys’, Wear Resistance of VT22 Titanium Alloy After Nitriding Combined with Heat Treatment. Materials Science 52, 56-61 (2016). DOI: https://doi.org/10.1007/s11003-016-9926-0
  • [19] I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys - an overview, Materials Science and Engineering A243, 46-65 (1998). DOI: https://doi.org/10.1016/S0921-5093(97)00783-1
  • [20] E. Fromm, G. Hörz, Hydrogen, nitrogen, oxygen, and carbon in metals, Int. Metals Rev. 25, 269-311 (1980). DOI: https://doi.org/10.1179/imtr.1980.25.1.269
  • [21] A. Zhecheva, S. Malinov, I. Katzarov, W. Sha, Modelling of kinetics of nitriding titanium alloys, Surf. Eng. 22, 452-454 (2006). DOI: https://doi.org/10.1179/174327806X124717
  • [22] J. Xu, C.D. Lane, J. Ou, S.L. Cockcroft, D.M. Maijer, A. Akhtar, Y. Marciano, Diffusion of nitrogen in solid titanium at elevated temperature and the influence on the microstructure, Journal of Materials Research and Technology 12, 125-137 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.02.073
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e440864-f372-43e9-948b-18b55fba14c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.