PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optical Fibers in the Design and Fabrication of Smart Garments – a Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several publications and even commercial products showcasing the application of optical fibers for textile goods abound in literature. Optical fibers can be employed as sensors by making use of physical principles to sense strain, temperature, and other quantities by tailoring the fiber such that the quantity to be measured alters the intensity, phase, polarisation, and wavelength of light within the fiber. However, a paper directed at the development of textile based applications or smart garments using optical fibers is lacking. This review seeks to serve as apt reference material for the development of optical fiber based textile sensors or smart garments with a focus on the application of plastic optical fibers (POFs). Highlighted are the salient material properties of POFs and their importance in delivering satisfactory sensing results. Special treatment has also been given to their proposed feasibility for embedment within weft knitted structures.
Rocznik
Strony
31--42
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
  • Huizhou University, Glorious Sun Guangdong Fashion College, Fashion Engineering Department, Huizhou City, Guangdong Province, PR of China
autor
  • Huizhou University, Glorious Sun Guangdong Fashion College, Fashion Engineering Department, Huizhou City, Guangdong Province, PR of China
autor
  • Huizhou University, Glorious Sun Guangdong Fashion College, Fashion Engineering Department, Huizhou City, Guangdong Province, PR of China
autor
  • Huizhou University, Glorious Sun Guangdong Fashion College, Fashion Engineering Department, Huizhou City, Guangdong Province, PR of China
Bibliografia
  • 1.Kaur K, Rampersad G. Trust in Driverless Cars: Investigating Key Factors Influencing the Adoption of Driverless Cars. Journal of Engineering and Technology Management 2018; 48: 87-96.
  • 2. Raji RK, Miao X, Wan A, Niu L, Li Y, Boakye A. Design and Fabrication of Smart Bandeau Bra for Breathing Pattern Measurement. In: Arai K, editor. Future Technologies Conference 2019; San Francisco: Springer International Publishing; 2020. p. 40-8.
  • 3. Raji RK, Miao X, Wan A, Zhang S, Li Y, Frimpong C. Progress on the Fabrication of Smart Textiles Based on Soft Strain Sensors. AATCC Journal of Research 2019; 6(6): 1-12.
  • 4. Rickerson Jr D. Wearable Satellite Tracker. Google Patents; 2006.
  • 5. Ranjeeth B, Reddy BS, Reddy YMK, Suchitra S, Pavithra B, editors. Smart Child Safety Wearable Device. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC); 2020: IEEE.
  • 6. Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring. Advanced Healthcare Materials 2018; 7(12): 1800074.
  • 7. Hashem M, Al Kheraif AA, Fouad H. Design and Development of Wireless Wearable Bio-Tooth Sensor for Monitoring of Tooth Fracture and Its Bio Metabolic Components. Computer Communications 2020;150: 278-85.
  • 8. Said S, AlKork S, Beyrouthy T, Abdrabbo MF, editors. Wearable Bio-Sensors Bracelet for Driveras Health Emergency Detection. 2017 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART); 2017: IEEE.
  • 9. AlMohimeed I, Turkistani H, Ono Y, editors. Development of Wearable and Flexible Ultrasonic Sensor for Skeletal Muscle Monitoring. 2013 IEEE International Ultrasonics Symposium (Ius); 2013: IEEE.
  • 10. Fan J, Bao B, Wang Z, Li H, Wang Y, Chen Y, et al. Flexible, Switchable and Wearable Image Storage Device Based on Light Responsive Textiles. Chemical Engineering Journal 2021; 404: 126488.
  • 11. Raji RK, Miao X, Wan A, Niu L, Li Y, Boakye A. Knitted Piezoresistive Smart Chest Band and Its Application for Respiration Patterns Assessment. Journal of Engineered Fibers and Fabrics 2019; 14: 1-14.
  • 12. Rothmaier M, Luong M, Clemens F. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers. Sensors 2008; 8(7): 4318.
  • 13. Koyama Y, Nishiyama M, Watanabe K. Smart Textile Using Hetero-Core Optical Fiber for Heartbeat and Respiration Monitoring. IEEE Sensors Journal 2018; 18(15): 6175-80.
  • 14. Kersey A, Dandridge A, editors. Applications of Fiber-Optic Sensors. IEEE Transactions on Components Hybrids and Manufacturing Technology 1989; Houston, Texas.: IEEE.
  • 15. Hecht J. Laser. Encyclopædia Britannica: Encyclopædia Britannica, inc.; 2019.
  • 16. Nakajima Y, KoujiMochizuki; Tanaka H, Yoshihiro Arashitani, inventors; Furukawa Electric Co., Ltd., Tokyo (JP) assignee. Optical fiber. Japan patent US 8,571,372 B2 2013.
  • 17. Allemand LR, Calvet J, Cavan J-C, Goldwasser M, Thevenin J-C, inventors; Commissariat a l Energie Atomique et aux Energies Alternatives, assignee. Process for The Production of Plastic Optical Fibers. France patent 4,571,313. 1986.
  • 18. Arrue J, Jiménez F, Aldabaldetreku G, Durana G, Zubia J, Lomer M, et al. Analysis of The use of Tapered Graded-Index Polymer Optical Fibers for Refractive-Index Sensors. Optics Express 2008; 16(21): 16616-31.
  • 19. Sanghera JS, Aggarwal ID. Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review. Journal of Non-Crystalline Solids 1999; 256-257: 6-16.
  • 20. Bai Y, Bai Q. Chapter 7 – Fiber Optic Monitoring System. In: Bai Y, Bai Q, editors. Subsea Pipeline Integrity and Risk Management. Boston: Gulf Professional Publishing; 2014. p. 145-65.
  • 21. Yang D. The Design of Mood Changing Clothing Based on Fibre Optics and Photovoltaic Technologies [Doctorate]: Heriot-Watt University; 2012.
  • 22. Shimada K. 10 – Spinning of optical fibers. In: Nakajima T, Kajiwara K, McIntyre JE, editors. Advanced Fiber Spinning Technology: Woodhead Publishing; 1994. p. 208-24.
  • 23. Schleinitz HM, Stephan PG, inventors; EI du Pont de Nemours and Co, assignee. Low attenuation all plastic optical fiber. Canada patent CA1120197A. 1982.
  • 24. Nishida K, Yamamoto T, inventors; Mitsubishi Rayon Co Ltd, assignee. Plastic optical fibers. Japan patent EP0098578B1. 1987.
  • 25. Patra T. Numerical Aperture of A Plastic Optical Fiber. International Journal of Innovations in Engineering and Technology (IJIET). 2013; 2(1): 258-63.
  • 26. PMMA Fiber Optic: Daishing POF Co. Ltd.; 2019 [cited 2020 9/11/2020]. Available from: http://www.dspof.cn/product-50.html.
  • 27. Beasley JK, Beckerbauer R, Schleinitz HM, Wilson FC, inventors; Mitsubishi Rayon Co Ltd assignee. Low attenuation optical fiber of deuterated polymer USA1978.
  • 28. Han W, Rebow M, Liu D, Farrell G, Semenova Y, Wu Q. Optical Fiber Fresnel Reflection Sensor for Direct Detection of the Solid–Liquid Phase Change in N-Octadecane. Measurement Science and Technology 2018; 29(12): 125107.
  • 29. Su H, Huang XG. Fresnel-Reflection-Based Fiber Sensor for on-Line Measurement of Solute Concentration in Solutions. Sensors and Actuators B: Chemical. 2007; 126: 579-82.
  • 30. Zhao J, Huang XG, Chen J. A Fresnel-Reflection-Based Fiber Sensor For Simultaneous Measurement of Liquid Concentration and Temperature. Journal of Applied Physics – J APPL PHYS. 2009; 106.
  • 31. Stowe DW, inventor; Gould Electronics Inc, assignee. Fiber optic interferometer. United States of America patent US4380394A. 1983.
  • 32. Ali Reza Bahrampour, Sara Tofighi, Bathaee M, Farman F. Optical Fiber Interferometers and Their Applications. In: (Ed. IP, editor. Interferometry – Research and Applications in Science andTechnology. www.intechopen.com: Intech Open Science; 2012. p. 6-7.
  • 33. Beal V. Scattering. webopediacom. webopedia.com: webopedia; 2019.
  • 34. Pelous J, Levelut C. Amorphous Materials: Vibrational Excitations. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier; 2001. p. 242-50.
  • 35. Thomas S-M. Brillouin Spectroscopy Teach the Earth Portal: On the Cutting Edge website; 2019 [cited 2019]. Available from: https://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/brillouin.html.
  • 36. Britannica TEoE. Rayleigh scattering. Encyclopædia Britannica: Encyclopædia Britannica, inc.; 2018.
  • 37. Andrews DL. Rayleigh Scattering and Raman Spectroscopy, Theory. In: Lindon JC, editor. Encyclopedia of Spectroscopy and Spectrometry. Oxford: Elsevier; 1999. p. 1993-2000.
  • 38. Palmieri L, Schenato L. Distributed Optical Fiber Sensing Based on Rayleigh Scattering. The Open Optics Journal 2013; 7(1): 104-27.
  • 39. Parker TR, Farhadiroushan M, Handerek VA, Rogers AJ. Temperature and Strain Dependence of the Power Level and Frequency of Spontaneous Brillouin Scattering in Optical Fibers. Optics Letters 1997; 22(11): 787-9.
  • 40. Tomasi GP. Laser Based Fiber Optic Illumination and Its Application on Aircraft: EE Publishers; 2018 [cited 2019 121/12/2019]. Available from: https://www.ee.co.za/article/fiber-optic-lighting-for-aircraft.html.
  • 41. Knisley JR. The Fundamentals of Fiber Optic Lighting ec&mweb.com: EC&M; 2018 [cited 2019 12/12/2019]. Available from: https://www.ecmweb.com/content/article/20889599/the-fundamentals-of-fiber-optic-lighting.
  • 42. Oliveira R, Sequeira F, Bilro L, Nogueira R. Polymer Optical Fiber Sensors and Devices. In: Peng G-D, editor. Handbook of Optical Fibers. Singapore: Springer Singapore; 2018. p. 1-41.
  • 43. Anderson JM, Carlisle AW, Grimes GJ, Sherman CJ, Lampert NR, inventors; Nokia of America Corp, assignee. Connector for plastic optical fiber. Canada patent CA2254709C. 2003.
  • 44. de Miguel J, Galindo-Santos J, Pulido de Torres C, Salgado P, Velasco A, Corredera P. Experimental Demonstration of Low-Uncertainty Calibration Methods for Bragg Grating Interrogators. Sensors (Basel). 2018;18(6).
  • 45. Moon JA, Sirkis JS, Jones R, Winston CR, Fournier DR, Pinto J, et al. Optical spectrum analyzer. Google Patents; 2007.
  • 46. Vayshenker I, Li X, Livigni DJ, Scott TR, Cromer CL. Optical fiber power meter calibrations at NIST: NIST; 2000.
  • 47. Equipment AT. EXFO FTB-720 Single/Multimode, LAN/WAN Access OTDR: Avalon Test Equipment.; 2020 [cited 2020 9/12/2020]. Available from: https://avalontest.com/exfo-ftb-720-single-multimode-lan-wan-access-otdr/.
  • 48. Allen M. Testing Cabling in the Data Center. 2015.
  • 49. Iida H, Hirota H, Uematsu T, Ambe N, editors. Novel fibre termination identification employing local light injection and 1.31/1.55-μm-band coherent OTDR. 45th European Conference on Optical Communication (ECOC 2019); 2019: IET.
  • 50. Raji RK, Miao X, Boakye A. Electrical Conductivity in Textile Fibers and Yarns-Review. AATCC Journal of Research 2017; 4(3): 8-21.
  • 51. Sergeyeva H, Sergeyev SV. Glowing felt textile [Invited]. Optical Materials Express 2019; 9(4): 1915-21.
  • 52. Selm B, Rothmaier M, Camenzind M, Khan T, Walt H. Novel Flexible Light Diffuser and Irradiation Properties For Photodynamic Therapy. Journal of Biomedical Optics. 2007; 12: 034024.
  • 53. Ernesto Suaste-Gómez, Daniel Hernández-Rivera, Sánchez-Sánchez AS, Villarreal-Calva E. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers. Sensors 2014; (14): 21523-34.
  • 54. Alemdar K, Likoglu S, Fidanboylu K, Toker O. A Novel Periodic Macrobending Hetero-Core Fiber Optic Sensor Embedded In Textiles 2013. 467-71 p.
  • 55. Krehel M, Schmid M, Rossi RM, Boesel LF, Bona G, Scherer LJ. An Optical Fibre-Based Sensor for Respiratory Monitoring. Sensors. 2014; 14(7): 13088-101.
  • 56. Chen A, Tan J, Henry P, Tao X. The Design and Development of an Illuminated Polymeric Optical Fibre (POF) Knitted Garment. The Journal of The Textile Institute 2019: 1-11.
  • 57. Ann J. Jo Ann’s Knitting Blog » Practical Guide [Internet]. Jo Ann’s Knitting Blog2019. [cited 2019]. Available from: https://www.knittingmagic.biz/practical-guide/structural-modifications-commonly-used-in-weft-and-warp-knitting.html.
  • 58. Liu Su, Chenxiao Yang, Yuanfang Zhao, Xiaoming T, Tong Jiahui, Li L. The impact of float stitches on the resistance of conductive knitted structures. Textile Research Journal 2016; 86(14): 1455-73.
  • 59. Badr AA, El-Nahrawy A. Moisture Properties of Raised 3-Thread Fleece Fabric Knitted with Different Face and Fleecy Yarns. Alexandria Engineering Journal 2016; 55(3): 2881-92.
  • 60. Crawford M. Wearable Technology Is Booming, Powered By Photonics: SPIE – The International Society of Optics and Photonics; 2016 [cited 2019 27/11/2019]. Technology]. Available from: https://spie.org/news/wearable-photonics?SSO=1.
  • 61. Grattan KTV, Sun T. Fiber Optic Sensor Technology: An Overview. Sensors and Actuators A: Physical. 2000; 82(1): 40-61.
  • 62. Tao X. 7 – Wearable Photonics Based on Integrative Polymeric Photonic Fibres. In: Tao X, editor. Wearable Electronics and Photonics: Woodhead Publishing; 2005. p. 136-54.
  • 63. Koncar V. Optical Fiber Fabric Displays. Opt Photon News. 2005; 16(4): 40-4.
  • 64. Harlin A, Mäkinen M, Vuorivirta A, Kymenlaakson, Kymidesign A. Development of polymeric optical fibre fabrics as illumination elements and textile displays. AUTEX Research Journal 2003; 3(1): 1-8.
  • 65. Im MH, Park EJ, Kim CH, Lee MS, editors. Modification of Plastic Optical Fiber for Side-Illumination2007; Berlin, Heidelberg: Springer Berlin Heidelberg.
  • 66. Pun CJ, Liu Z, Tse MLV, Cheng X, Tao XM, Tam H. Side-Illumination Fluorescence Dye-Doped-Clad PMMA-Core Polymer Optical Fiber: Potential Intrinsic Light Source for Biosensing. IEEE Photonics Technology Letters. 2012; 24(11): 960-2.
  • 67. Shen J, Chui C, Tao X. Luminous Fabric Devices for Wearable Low-Level Light Therapy. Biomedical Optics Express 2013; 4(12): 2925-37.
  • 68. Mart I. Physiotherapy & Rehab Aids. In: Purpose RBBPfC, editor. jpeg. Indiamart.com: Indiamart.com; 2019. p. oyal Blue Biliblanket for Phototherapy
  • 69. Kremenchugsky V, Buttitta A, inventors; Datex-Ohmeda Inc, assignee. Servocontrol for fiber-optic, phototherapy pad. Germany patent EP0616820A2. 2002.
  • 70. Park J-Y, Yoo WJJ, Won; K, Seo JK, Heo JYSM, Jin; Lee B. Development of Nasal-cavity-and Abdomen-attached Fiber-optic Respiration Sensors. Journal of the Korean Physical Society. 2010; 57(61): 1550.
  • 71. Liu L, Ye T, Guo X, Kong R, Bo L, Wang G. Apnea Detection with Microbend Fiber-Optic Sensor 2018; 207-17 p.
  • 72. Arifin A, Agustina N, Dewang S, Idris I, Tahir D. Polymer Optical Fiber-Based Respiratory Sensors: Various Designs and Implementations. Journal of Sensors 2019; 2019: 1-6.
  • 73. Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F, et al. Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sensors Journal 2008; 8(7): 1215-22.
  • 74. Krehel M, Wolf M, Boesel L, Rossi R, Bona G-L, Scherer L. Development of a Luminous Textile For Reflective Pulse Oximetry Measurements. Biomedical Optics Express. 2014; 5(8): 2537-47.
  • 75. Quandt BM, Pfister MS, Lübben JF, Spano F, Rossi RM, Bona G-L, et al. POF-Yarn Weaves: Controlling The Light Out-Coupling Of Wearable Phototherapy Devices. Biomedical Optics Express 2017; 8(10): 4316-30.
  • 76. Abro ZA, Hong C, Chen N, Zhang Y, Lakho RA, Yasin S. A Fiber Bragg Grating-Based Smart Wearable Belt For Monitoring Knee Joint Postures. Textile Research Journal 2019: 1-9.
  • 77. Rocha R, Silva A, Carmo J, Correia JH. FBG In PVC Foils For Monitoring The Knee Joint Movement During The Rehabilitation Process. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference; 08/01; Boston, Massachusetts USA: IEEE; 2011. p. 458-61.
  • 78. Koyama Y, Nishiyama M, Watanabe K. A Motion Monitor Using Hetero-Core Optical Fiber Sensors Sewed in Sportswear to Trace Trunk Motion. Instrumentation and Measurement, IEEE Transactions on. 2013; 62: 828-36.
  • 79. Seshadri DR, Drummond C, Craker J, Rowbottom JR, Voos JE. Wearable devices for sports: New integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time. IEEE pulse. 2017; 8(1): 38-43.
  • 80. Bandodkar AJ, Jeerapan I, Wang J. Wearable chemical sensors: Present challenges and future prospects. Acs Sensors. 2016; 1(5): 464-82.
  • 81. de Lima CF, van der Elst LA, Koraganji VN, Zheng M, Kurtoglu MG, Gumennik A. Towards Digital Manufacturing of Smart Multimaterial Fibers. Nanoscale research letters. 2019; 14(1): 209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e42c50f-6bb2-4897-962b-7e3616d86bba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.