PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bolting control of a coal roadway under multi-seam mining – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stress field of the roadway under multi-seam mining is complex due to multiple mining disturbances. The bolting control of the roadway under multi-seam mining has attracted wide concern. Moreover, conventional metal supporting materials in the coal rib are prone to sparks when shearer works, and new bolting materials are urgently needed. Taking a track roadway under multi-seam mining in China as the engineering case, the mining-induced stress field of the track roadway under multi-seam mining was investigated through numerical simulation and lab and field tests. The test evaluated the mechanical behaviour of FRP bolts and rebar bolts, as well as their anchorage performance under different conditions. Comparative analysis was conducted on the deformation and failure characteristics of the roadway under different bolting parameters to determine an optimised bolting scheme for the track roadway in the I011501 working face. The results show that the goafs and the remaining coal pillars in the overlying coal seams increase the stress in the track roadway in the I011501 working face, especially for the lower rib and roof. The tensile force of the 27 mm-diameter FRP bolt is 1.2 times that of the 22 mm-diameter rebar bolt. The shear strength of the full-length anchored FRP bolt is 70.8% higher than that of the end-anchored bolt. The peak stress of the full-length-anchored bolt is in the shallow coal and rock mass. The optimised bolting scheme of the track roadway subject to multi-seam mining is determined, and the cost of the optimised bolting scheme is lower by about 25.2%, as compared with the primary bolting scheme. Numerical simulation and field application results indicate that the optimised bolting scheme can significantly reduce the deformation and plastic failure of the track roadway in the I011501 working face, which is under multi-seam mining conditions.
Rocznik
Strony
303--325
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab.
Twórcy
autor
  • Anhui University of Science and Technology, Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, China
autor
  • Anhui University of Science and Technology, Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, China
autor
  • Anhui University of Science and Technology, Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, China
autor
  • Anhui University of Science and Technology, Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, China
  • Shaanxi Yanchang Petroleum Balasu Coal Industry Limited Company, China
autor
  • China Coal Research Institute, China
Bibliografia
  • [1] Z.H. Cheng, H. Pan, Q.L. Zou, Z.H. Li, L. Chen, J.L. Cao, K. Zhang, Y.G. Cui, Gas flow characteristics and optimizationof gas drainage borehole layout in protective coal seam mining: A case study from the Shaqu coal mine,Shanxi Province, China. Natural Resources Research 30 (2), 1481-1493 (2021).DOI: https://doi.org/10.1007/s11053-020-09775-4.
  • [2] C.K. Chabedi, T. Zvarivadza, Multi-seam mining of the deep Waterberg resources. Journal of The Southern AfricanInstitute of Mining and Metallurgy 116 (11), 1037-1042 (2016).DOI: https://doi.org/10.17159/2411-9717/2016/v116n11a5.
  • [3] B . Ghabraie, G. Ren, J.V. Smith, Characterising the multi-seam subsidence due to varying mining configuration,insights from physical modelling. International Journal of Rock Mechanics and Mining Sciences 93, 269-279(2017). DOI: https://doi.org/10.1016/j.ijrmms.2017.02.001.
  • [4] Q.D. Qu, H. Guo, K. Manoj, Monitoring and analysis of ground movement from multi-seam mining. InternationalJournal of Rock Mechanics and Mining Sciences 148, 104949 (2021).DOI: https://doi.org/10.1016/j.ijrmms.2021.104949.
  • [5] A.A. Isachenko, M.G. Koryaga, Support and stabilization of temporary roadways in extraction of coal measuresin Kuzbass. Journal of Mining Science 59 (3), 417-423 (2023).DOI: https://doi.org/10.1134/S1062739123030080.
  • [6] J.G. Ning, J. Wang, Y.L. Tan, L.S. Zhang, T.T. Bu, In situ investigations into mining-induced overburden failuresin close multiple-seam longwall mining: A case study. Geomechanics and Engineering 12 (4), 657-673 (2017).DOI: https://doi.org/10.12989/gae.2017.12.4.657.
  • [7] B . Ghabraie, G. Ren, J.V. Smith, Characterising the multi-seam subsidence due to varying mining configuration,insights from physical modelling. International Journal of Rock Mechanics and Mining Sciences 93, 269-279(2017). DOI: https://doi.org/10.1016/j.ijrmms.2017.02.001.
  • [8] B . Ghabraie, K. Ghabraie, G. Ren, J.V. Smith, Numerical modelling of multistage caving processes: insights frommulti-seam longwall mining-induced subsidence. International Journal for Numerical and Analytical Methods inGeomechanics 41 (7), 959-975 (2017). DOI: https://doi.org/10.1002/nag.2659.
  • [9] Q.X. Huang, J.W. Du, J. Chen, Y.P. He, Coupling control on pillar stress concentration and surface cracks in shallowmulti-seam mining. International Journal of Mining Science and Technology 31 (1), 95-101 (2021).DOI: https://doi.org/10.1016/j.ijmst.2020.12.019.
  • [10] C.L. Tian, X.L. Yang, H.T. Sun, Y.B. Liu, Q.T. Hu, Experimental study on the overburden movement and stressevolution in multi-seam mining with residual pillars. Energy Science & Engineering 7, 3095-3110 (2019).DOI: https://doi.org/10.1002/ese3.482.
  • [11] Z.Q. Liu, X.X. Zhong, B.T. Qin, H.W. Ren, A. Gao, Redevelopment of fractures and permeability changes aftermulti-seam mining of shallow closely spaced coal seams. Archives of Mining Sciences 64 (4), 671-686 (2019).DOI: https://doi.org/10.24425/ams.2019.129376.
  • [12] D . Adhikary, M. Khanal, C. Jayasundara, R. Balusu, Deficiencies in 2D simulation: A comparative study of 2Dversus 3D simulation of multi-seam longwall mining. Rock Mechanics and Rock Engineering 49 (6), 2181-2185(2016). DOI: https://doi.org/10.1007/s00603-015-0842-7.
  • [13] A.M. Suchowerska, J.P. Carter, R.S. Merifield, Horizontal stress under supercritical longwall panels. InternationalJournal of Rock Mechanics and Mining Sciences 70, 240-251 (2014).DOI: https://doi.org/10.1016/j.ijrmms.2014.03.009.
  • [14] M.W. Zhang, S. Hideki, S. Takashi, M. Kikuo, L.M. Dou, Evolution and effect of the stress concentration and rockfailure in the deep multi-seam coal mining. Environmental Earth Sciences 72, 629-643 (2014).DOI: https://doi.org/10.1007/s12665-013-2985-8.
  • [15] J. Wang, J.G. Ning, Y.L. Tan, S.C. Hu, W.Y. Guo, Deformation and failure laws of roadway surrounding rockand support optimizationduring shallow-buried multi-seam mining. Geomatics, Natural Hazards and Risk 11 (1),191-211 (2020). DOI: https://doi.org/10.1080/19475705.2020.1713914.
  • [16] N . Ghosh, H. Agrawal, S.K. Singh, G. Banerjee, Optimum chain pillar design at the deepest multi-seam longwallworkings in India. Mining Metallurgy & Exploration 37 (2), 651-664 (2020).DOI: https://doi.org/10.1007/s42461-019-00138-z.
  • [17] N .L. Pedersen, Overall bolt stress optimization. Journal of Strain Analysis for Engineering Design 48 (3), 155-165(2013). DOI: https://doi.org/10.1177/0309324712470233.
  • [18] V . Sarfarazi, K. Asgari, M. Nasrollahi, Interaction between rock bolt and rock bridge under tensile loading. Geomechanicsand Engineering 25 (6), 455-471 (2013). DOI: https://doi.org/10.12989/gae.2021.25.6.455.
  • [19] K. Yang, Y. Bai, C.T. Ding, S.Y. Kong, Comparative study on mechanical performance of bolted joints with steeland fibre reinforced polymer bolts. Journal of Building Engineering 41, 102457 (2021).DOI: https://doi.org/10.1016/j.jobe.2021.102457.
  • [20] T. Majcherczyk, Z. Niedbalski, P. Małkowski, L. Bednarek, Analysis of yielding steel arch support with rock boltsin mine roadways stability aspect. Archives of Mining Sciences 59 (3), 641-654 (2014).DOI: https://doi.org/10.2478/amsc-2014-0045.
  • [21] R.A. Moffat, J.F. Beltran, R. Herrera, Applications of BOTDR fiber optics to the monitoring of undergroundstructures. Geomechanics and Engineering 9 (3), 397-414 (2015).DOI: https://doi.org/10.12989/gae.2015.9.3.397.
  • [22] J.P. Zhang, L.M. Liu, C.X. Liu, Y. Li, Mechanism and application of new prestressed yield bolt for controllingdeep high-stress rock mass. Tunnelling and Underground Space Technology 119, 104254 (2022).DOI: https://doi.org/10.1016/j.tust.2021.104254.
  • [23] P. Małkowski, X.W. Feng, Z. Niedbalski, M. Żelichowski, Laboratorial tests and numerical modeling of rock boltsbonded by different materials. Rock Mechanics and Rock Engineering 56 (4), 2589-2606 (2023).DOI: https://doi.org/10.1007/s00603-022-03191-1.
  • [24] B .J. Sun, Q.W. Liu, W.T. Li, X.Z. Yang, B. Yang, T.C. Li, Numerical implementation of rock bolts with yield andfracture behaviour under tensile-shear load. Engineering Failure Analysis 139, 106462 (2022).DOI: https://doi.org/10.1016/j.engfailanal.2022.106462.
  • [25] N . Lawler, M.A. Polak, Development of FRP shear bolts for punching shear retrofit of reinforced concrete slabs.Journal of Composites for Construction 15 (4), 591-601 (2011).DOI: https://doi.org/10.1061/(asce)cc.1943-5614.0000188.
  • [26] D .S.E. Abdelkerim, X. Wang, H.A. Ibrahim, Z.S. Wu, Static and fatigue behavior of pultruded FRP multi-boltedjoints with basalt FRP and hybrid steel-FRP bolts. Composite Structures 220, 324-337 (2019).DOI: https://doi.org/10.1016/j.compstruct.2019.03.085.
  • [27] J. Han, Z.Q. Bi, B. Liang, C. Cao, S.W. Ma, Anchorage performance of large-diameter FRP bolts and their applicationin large deformation roadway. International Journal of Mining Science and Technology 33, 1037-1043(2023). DOI: https://doi.org/10.1016/j.ijmst.2022.09.028.
  • [28] J. Feng, R.X. Wang, Y.F. Zhang, Z.N. Tu, T. Yang, Examining the creep characteristics of basalt fiber-reinforcedpolymer grouted bolts in mixed soil. International Journal of Geomechanics 23 (10), 04023164 (2023).DOI: https://doi.org/10.1061/ijgnai.gmeng-8355.
  • [29] T. Nguyen, K. Ghabraie, T.C. Thanh, Simultaneous pattern and size optimisation of rock bolts for undergroundexcavations. Computers and Geotechnics 66, 264-277 (2015).DOI: https://doi.org/10.1016/j.compgeo.2015.02.007.
  • [30] S. Ghyasvand, A. Fahimifar, F.M. Nejad, On the optimum design of reinforcement systems for old masonry railwaytunnels. Geomechanics and Engineering 28 (2), 145-155 (2022).DOI: https://doi.org/10.12989/gae.2022.28.2.145.
  • [31] I tasca Consulting Group. Inc. Fast Language Analysis of Continua in Three Dimensions Versin 6.0 User’s Mannual.USA: Itasca Consulting Group, Inc.; 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e3b7f32-b437-4baf-8c4a-e03cca7e6060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.