PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ionospheric response characteristics and PPP accuracy analysis at different latitudes during strong geomagnetic storms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the response of ionosphere to strong geomagnetic storms at different latitudes, this paper focuses on the response characteristics of global ionospheric ROTI at different latitudes during the September 2017 strong geomagnetic storms based on global ROTI maps and GPS dual-frequency observation data, and explores the PPP accuracy of GPS stations at each latitude during two different types of strong geomagnetic storms. The results show that (i) the daily mean ROTI values during the September 2017 strong geomagnetic storms show a spatial distribution of higher in the global region in the high-latitude region of North America, the northern European region and the whole Antarctic region, and lower in other regions. (ii) The highest ROTI time mean value in the high-latitude belt, with a peak value of 0.30 TECU/min, exceeds twice the peak value of the global time mean value; within the mid-latitude belt, the ROTI time mean value in the northern hemisphere is larger, with values exceeding three times those of the Southern Hemisphere. (iii) During the strong geomagnetic storm in September 2017, the PPP results of high-latitude GPS stations were affected to a greater extent, and the mean value of positioning error in the vertical direction exceeded 2.0 m. (iv) During the strong geomagnetic storm in November 2021, the changing trend of the mean value of PPP positioning error at different latitudes was consistent with that of 2017, but the mean value of positioning error and RMS at high latitudes in 2021 was higher than those in 2017.
Czasopismo
Rocznik
Strony
2097--2106
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Zibo Jinzhai Surveying and Mapping Co. Ltd., Zibo 255000, China
autor
  • Jinyun County Land Spatial Planning Service Center, Lishui 321400, China
autor
  • Zibo Jinzhai Surveying and Mapping Co. Ltd., Zibo 255000, China
autor
  • Gansu Forestry Polytechnic, Tianshui 741020, China
autor
  • School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China
Bibliografia
  • 1. Arowolo OA, Akala AO, Oyeyemi EO (2021) Interplanetary origins of some intense geomagnetic storms during solar cycle 24 and the responses of african equatorial/low-latitude ionosphere to them. J Geophys Res Space Phys 126:e2020JA027929. https://doi.org/ 10.1029/2020JA027929
  • 2. Baker DN (1996) Solar wind-magnetosphere drivers of space weather. J Atmos Terr Phys 58:1509-1526. https://doi.org/10.1016/0021-9169(96)00006-2
  • 3. Buonsanto MJ (1999) Ionospheric storms a review. Space Sci Rev 88:563-601. https://doi.org/10.1023/A:1005107532631
  • 4. Burns AG, Killeen TL, Wang W, Roble RG (2004) The solar-cycledependent response of the thermosphere to geomagnetic storms. J Atmos Solar Terr Phys 66:1-14. https://doi.org/10.1016/j.jastp. 2003.09.015
  • 5. Carlin L, Hauschild A, Montenbruck O (2021) Precise point positioning with GPS and Galileo broadcast ephemerides. GPS Solut 25:77. https://doi.org/10.1007/s10291-021-01111-4
  • 6. Dashora N, Suresh S, Niranjan K (2019) Interhemispheric asymmetry in response of low-latitude ionosphere to perturbation electric fields in the main phase of geomagnetic storms. J Geophys Res Space Phys 124:7256-7282. https://doi.org/10.1029/2019JA0266 71
  • 7. Geng W, Huang W, Liu G, Liu S, Luo B (2022) Assessing the kinematic GPS positioning performance under the effect of strong ionospheric disturbance over china and adjacent areas during the magnetic storm. Radio Sci 57:e2021RS007329. https://doi.org/ 10.1029/2021RS007329
  • 8. Jacobsen KS, Andalsvik YL (2016) Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in
  • 9. Norway. J Space Weather Space Clim. https://doi.org/10.1051/ swsc/2016004
  • 10. Kamide Y et al (1997) Magnetic storms: current understanding and outstanding questions. Magnetic Storms. pp 1-19
  • 11. Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS Galileo and BeiDou. Sci Rep 5:8328. https://doi.org/10.1038/srep08328
  • 12. Li W, Song S, Cheng N (2022) Observation of the impacts of solar flares on the ionosphere and precise point positioning in south america around the halloween 2021. In: IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium
  • 13. Luo X, Gu S, Lou Y, Xiong C, Chen B, Jin X (2018) Assessing the performance of GPS precise point positioning Under different geomagnetic storm conditions during solar cycle 24. Sensors 18:1784. https://doi.org/10.3390/s18061784
  • 14. Mendillo M (2006) Storms in the ionosphere: patterns and processes for total electron content. Rev Geophys. https://doi.org/10.1029/ 2005RG000193
  • 15. Nie W, Rovira-Garcia A, Li M, Fang Z, Wang Y, Zheng D, Xu T (2022) The mechanism for GNSS-based kinematic positioning degradation at high-latitudes under the march 2015 Great Storm. Space Weather, 20: e2022SW003132. https://doi.org/10.1029/ 2022SW003132
  • 16. Paziewski J et al (2022) The implications of ionospheric disturbances for precise GNSS positioning in Greenland. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2022029
  • 17. Rajesh PK, Lin CH, Lin CY, Chen CH, Liu JY, Matsuo T, Chen SP, Yeh WH, Huang CY (2021) Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by FORMOSAT-7/COSMIC-2 and GNSS observations. J Geophys Res: Space Phys 126:28261. https://doi.org/10.1029/ 2020JA028261
  • 18. Spogli L et al (2021) Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and swarm satellites and by local ground-based observations. J Geophys Res Space Phys 126:e2020JA028368. https://doi.org/10.1029/2020J A028368
  • 19. Takasu T (2013) RTKLIB ver. 2.4. 2 Manual, RTKLIB: an open source program package for GNSS positioning.
  • 20. Tanna HJ, Pathak KN (2014) Longitude dependent response of the GPS derived ionospheric ROTI to geomagnetic storms.
  • 21. Astrophys Space Sci 352:373-384. https://doi.org/10.1007/ s10509-014-1938-3
  • 22. Wang W, Lei J, Burns AG, Solomon SC, Wiltberger M, Xu J, Zhang Y, Paxton L, Coster A (2010) Ionospheric response to the initial phase of geomagnetic storms: common features. J Geophys Res Space Phys. https://doi.org/10.1029/2009JA014461
  • 23. Wang N, Li Z, Yuan Y, Yuan H (2017) Monitoring of ionospheric irregularities with multi-GNSS observations: a new ionosphere activity index and product services. EGU general assembly 2017
  • 24. Xu Z, Hartinger MD, Clauer CR, Peek T, Behlke R (2017) A comparison of the ground magnetic responses during the 2013 and 2015 St. Patrick’s Day geomagnetic storms. J Geophys Res Space Physics 122:4023-4036. https://doi.org/10.1002/2016JA023338
  • 25. Zakharenkova I, Cherniak I (2021) Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at
  • 26. equatorial and middle latitudes during the September 7-8, 2017, geomagnetic storm. GPS Solut 25:132. https://doi.org/10.1007/ s10291-021-01166-3
  • 27. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102:5005-5017. https://doi.org/10.1029/96JB03860
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e36a787-1603-4b3f-a24f-e06e7f1fa114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.