PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A meshless method using global radial basis functions for creating 3-D wind fields from sparse meteorological data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficient, global meshless method has been developed for creating 3-D wind fields utilizing sparse meteorological tower data. Meshless methods do not require the need for a mesh in order to connect node points. In this study, node points are placed within the computational domain based on topological features. Wind speeds and directions are obtained from a set of instrumented meteorological towers. Inverse weighting is used to initially establish wind vectors at all nodal points. The Kansa technique, employing global basis functions, is then used to create a mass-consistent, 3-D wind field. The meshless method yields close approximations to results obtained with a high-order finite element technique. The method was implemented using MATLAB.
Rocznik
Strony
233--243
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • UNLV, NCACM, Dept. of Mech. Engr., Las Vegas, NV, U.S.A
autor
  • Major, USAF, Dept. of Engineering Mechanics, USAFA
autor
Bibliografia
  • [1] J.M. Acres. Modeling arterial blood flow using radial basis functions. MS Thesis, University of Nevada Las Vegas, LV, NV, p. 55, 2010.
  • [2] S.N. Atluri, T. Zhu. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 22: 117–127, 1998.
  • [3] G.R. Balachandran, A. Rajagopal, S.M. Sivakumar. Mesh free Galerkin method based on natural neighbors and conformal mapping. Comput. Mech., 42(6): 885–905, 2009.
  • [4] Y. Choi, S.J. Kim. Node Generation Scheme for the Mesh-less Method by Voronoi Diagram and Weighted Bubble Packing. Fifth US National Congress on Computational Mechanics, Boulder, CO, 1999.
  • [5] M.H. Dickerson. MASCON – A mass consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteor., 17: 241–253, 1978.
  • [6] G.E. Fasshauer. Newton iteration with multiquadrics for the solution of nonlinear PDEs. Comput. and Math. Appl., 43(3–5): 423–438, 2002.
  • [7] G.E. Fasshauer. Meshfree approximation methods with MATLAB. World Scientific Pub. Co., Singapore, p. 500, 2007.
  • [8] S. Finardi, G. Tinarelli, P. Faggian, G. Brusasca. Evaluation of different wind field modeling techniques for wind energy applications over complex topography. J. Wind Eng. Ind. Aero., 74–76: 283–294, 1998.
  • [9] R. Franke. Scattered data interpolation tests of some methods. Math. of Comput., 38: 181–200, 1982.
  • [10] L. Gewali, D.W. Pepper. Adaptive Node Placement for Mesh-Free Methods. ICCES’10, Las Vegas, NV, 2010.
  • [11] W.R. Goodin, G.J. McCrae, J.H. Seinfeld. An objective analysis technique for constructing three-dimensional urban-scale wind fields. J. Appl. Meteor., 19: 98–108, 1980.
  • [12] W.R. Goodin, G.J. McCrae, J.H. Seinfeld. A comparison of interpolation methods for sparse data: application to wind and concentration fields. J. Appl. Meteor., 18: 761–771, 1979.
  • [13] R.L. Hardy. Multiquadric equations of topography and other irregular surfaces. J. of Geophy. Res., 176: 1905– 1915, 1971.
  • [14] E.J. Kansa. Multiquadrics. A scattered data approximation scheme with applications to computational fluid dynamics, II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. and Math. Appl., 19(8–9): 147–161, 1990.
  • [15] E.J. Kansa. Highly accurate methods for solving elliptic and parabolic partial differential equations. WIT Transactions on Modelling and Simulation, 39: 5–15, 2005.
  • [16] T. Kitada, A. Kaki, H. Ueda, L.K. Peters. Estimation of vertical air motion from limited horizontal wind data-a numerical experiment. Atmos. Environ., 17: 2181–2192, 1983.
  • [17] R. Lange. A three-dimensional transport-diffusion model for the dispersal of atmospheric pollutants and its validation against regional tracer studies. J. Appl. Meteor., 17: 241–256, 1978.
  • [18] X.Y. Li, S.H. Teng, A. Ungor. Generating a Good Quality Point Set for the Mesh-less Methods. Computer Modeling in Engineering Sciences (CMES), 1(1): 10–17, 2000.
  • [19] G.R. Liu. Mesh Free Methods: Moving beyond the Finite Element Method. CRC Press, Boca Raton, 2003.
  • [20] R. Mathur, L.K. Peters. Adjustment of wind fields for application in air pollution modeling. Atmos. Environ., 24: 1095–1106, 1990.
  • [21] G. Montero, N. Sanin. 3-D modeling of wind field adjustment using finite differences in a terrain conformal coordinate system. J. Wind Eng. Ind. Aero., 89: 471–488, 2001.
  • [22] G.E. Montero, R. Rodrıguez, J.M. Montenegro, J.M. Escobar, J.M. Gonzalez-Yuste. Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Adv. Eng. Software, 36: 3–10, 2005.
  • [23] D.W. Pepper. A Finite Element Model for Calculating 3-D Wind Fields over Vandenberg Air Force Base. 29th AIAA Aerospace Sciences Meeting, Jan. 7–10, Reno, NV, Amer. Institute Aeronaut. Astronaut., AIAA pp. 91– 0451, 1991.
  • [24] D.W. Pepper, X. Wang. An h-adaptive finite-element technique for constructing 3D wind fields. J. Appl. Meteor. and Climat., 48: 580–599, 2009.
  • [25] D.W. Pepper, X. Wang. Application of an h-adaptive FEM for wind energy assessment in Nevada. Renew. Energy, 32: 1705–1722, 2007.
  • [26] R. Pielke. Mesoscale meteorological modeling. Academic Press, New York, N.Y., pp. 612, 1984.
  • [27] C.F. Ratto, R. Festa, C. Romeo, O.A. Frumento, M. Galluzzi. Mass-consistent models for wind fields over complex terrain: the state of the art. Environ. Software, 9: 247–268, 1994.
  • [28] C.M.C. Roque, A.J.M. Ferreira. Numerical experiments on optimal shape parameters for radial basis functions. Num. Meth. Part. Diff. Eqns., 26(3): 675–689, 2009.
  • [29] Y. Sasaki. An objective analysis based on the variational method. J. Meteor. Soc. Japan, 36: 77–88, 1958.
  • [30] J.T. Schaefer, C.A. Doswell III. On the interpolation of a vector field. Mon. Weather Rev., 107: 458–476, 1979.
  • [31] C.A. Sherman. A mass-consistent model for wind field over complex terrain. J. Appl. Meteor., 17: 312–319, 1978.
  • [32] R. Trobec, G. Kosec, M. Sterk, B. Sarler. Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Engr. Analysis with Boundary Elements, 36(3): 310–321, 2012.
  • [33] T.T. Warner, R.R. Fizz, N.L. Seaman. A comparison of two types of atmospheric transport models – use of observed winds versus dynamically predicted winds. J. Climate Appl. Meteor., 22, 394-406, 1983.
  • [34] J. Waters, D.W. Pepper. Global versus localized RBF meshless methods for solving incompressible fluid flow with heat transfer. Num. Heat Transfer, Part B, 68(3): 185–203, 2015.
  • [35] G. Yao, S. Islam, B. Sarler. Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions. Engr. Analysis with Boundary Elements, 36(11): 1640–1648, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e2e4aeb-bce7-44ae-b897-671c44a7a00e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.