PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Template chart detection for stoma telediagnosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the concept of using color template charts for the needs of telemedicine, particularly telediagnosis of the stoma. Although the concept is not new, the current popularity and level of development of digital cameras, especially those embedded in smartphones, allow common and reliable remote advice on various medical problems, which can be very important in the case of limitations in a physical contact with a doctor. The article focuses on the initial stages of photo processing for the needs of telemedicine, i.e., on the assumptions and the process of designing the appropriate template and detecting it in photos for stoma telediagnosis. Research on the developed algorithms for the location of fiducial markers and reference color fields, carried out on the basis of over 2,000 photos, showed a very high tolerance to scene exposure, lighting conditions and the camera used. The obtained results allowed the initial image intensity normalization of the stoma area as well as correct localization and measurement of changes detected on the skin and the mucosa, which, in the opinion of doctors, significantly increased the diagnostic value of the photographs.
Rocznik
Strony
147--160
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Electrical, Electronic, Computer and Control Engineering Lodz University of Technology ul. Stefanowskiego 18, 90-537 Lodz, Poland
  • Faculty of Electrical, Electronic, Computer and Control Engineering Lodz University of Technology ul. Stefanowskiego 18, 90-537 Lodz, Poland
  • Faculty of Organization and Management Lodz University of Technology ul. Piotrkowska 266, 90-924 Lodz, Poland; PHIN Consulting Ltd. ul. Czestochowska 63, 93-115 Lodz, Poland
autor
  • Department of General and Colorectal Surgery Medical University of Lodz ul. Zeromskiego 113, 90-549 Lodz, Poland; PHIN Consulting Ltd. ul. Czestochowska 63, 93-115 Lodz, Poland
Bibliografia
  • [1] Augestad, K., Sneve, A. and Lindsetmo, R. (2020). Telemedicine in postoperative follow-up of stoma patients: A randomized clinical trial (the stompa trial), British Journal of Surgery 107(5): 509–518, DOI: 10.1002/bjs.11491.
  • [2] Boraii, S. (2017). A descriptive study to assess quality of life in Egyptian patients with a stoma, Ostomy Wound Manage 63(7): 28–33, PMID: 28759426.
  • [3] Buckley, K., Adelson, L. and Hess, C. (2005). Get the picture! Developing a wound photography competency for home care nurses, Journal of Wound, Ostomy and Continence Nursing 32(3): 171–177, DOI: 10.1097/00152192-200505000-00005.
  • [4] Bulkley, J., McMullen, C., Grant, M., Wendel, C., Hornbrook, M. and Krouse, R. (2018). Ongoing ostomy self-care challenges of long-term rectal cancer survivors, Support Care Cancer 26(11): 3933–3939, DOI: 10.1007/s00520-018-4268-0.
  • [5] Ciecierski, K.A. (2020). Mathematical methods of signal analysis applied in medical diagnostic, International Journal of Applied Mathematics and Computer Science 30(3): 449–462, DOI: 10.34768/amcs-2020-0033.
  • [6] Ciążyński, K.A. and Fabijańska, A. (2015). Detection of QR-codes in digital images based on histogram similarity, Image Processing and Communications 20(2): 41–48.
  • [7] Dinuzzi, V., Palomba, G., Minischetti, M., Amendola, A., Aprea, P., Luglio, G., De Palma, G. and Aprea, G. (2021). Telemedicine in patients with an ostomy during the COVID-19 pandemic: A retrospective observational study, Wound Management & Prevention 67(1): 12–17.
  • [8] Fiala, M. (2005). Comparing ARTag and ARToolkit Plus fiducial marker systems, IEEE International Workshop on Haptic Audio Visual Environments and their Applications, Ottawa, Canada, pp. 147–152.
  • [9] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. and Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using mixed integer linear programming, Pattern Recognition 51: 481–491, DOI: 10.1016/j.patcog.2015.09.023.
  • [10] Hansen, D.K., Nasrollahi, K., Rasmussen, C.B. and Moeslund, T.B. (2017). Real-time barcode detection and classification using deep learning, International Joint Conference on Computational Intelligence, Funchal, Madeira, Portugal, pp. 321–327.
  • [11] de Heide, J., Vroegh, C.J., Szili Torok T., Gobbens, R.J., Zijlstra, F., Takens-Lameijer, M., Lenzen, M.J., Yap, S.C. and Scholte Op Reimer, W.J.M. (2017). A pilot feasibility study of telemedical wound assessment using a mobile phone in cardiology patients, Journal of Cardiovascular Nursing 32(2): E9–E15, DOI: 10.1097/JCN.0000000000000377.
  • [12] Hoon, L., Chi Sally, C. and Hong-Gu, H. (2013). Effect of psychosocial interventions on outcomes of patients with colorectal cancer: A review of the literature, European Journal of Oncology Nursing 17(6): 883–8913, DOI: 10.1016/j.ejon.2013.05.001.
  • [13] Hoube, S., Droeschel, D. and Behnke, S. (2016). Joint 3D laser and visual fiducial marker based SLAM for a micro aerial vehicle, 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, pp. 609–614.
  • [14] Kaltenbrunner, M. and Bencina, R. (2007). reacTIVision: A computer-vision framework for table-based tangible interaction, 1st International Conference on Tangible and Embedded Interaction, TEI’07, Baton Rouge, USA, pp. 69–74, DOI: 10.1145/1226969.1226983.
  • [15] Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K. and Tachibana, K. (2000). Virtual object manipulation on a table-top AR environment, IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), Munich, Germany, pp. 111–119, http://www.hitl.washin gton.edu/artoolkit/.
  • [16] Kowalski, M., Kaczmarek, P., Kabaciński, R., Matuszczak, M., Tranbowicz, K. and Sobkowiak, R. (2014). A simultaneous localization and tracking method for a worm tracking system, International Journal of Applied Mathematics and Computer Science 24(3): 599–609, DOI: 10.2478/amcs-2014-0043.
  • [17] Li, M., Howard, D. and King, R. (2019). A picture tells a thousand words smartphone-based secure clinical image transfer improves compliance in open fracture management, Injury 50(7): 1284–1287, DOI: 10.1016/j.injury.2019.05.010.
  • [18] Li, W., Nee, A. and Ong, S. (2017). A state-of-the-art review of augmented reality in engineering analysis and simulation, Multimodal Technologies and Interaction 1(3): 17, DOI: 10.3390/mti1030017.
  • [19] Lim, H. and Lee, Y. (2009). Real-time single camera SLAM using fiducial markers, 2009 ICCAS-SICE, Fukuoka, Japan, pp. 177–182.
  • [20] Muñoz-Salinas, R., Marín-Jimenez, M. and Medina-Carnicer, R. (2019). SPM-SLAM: Simultaneous localization and mapping with squared planar markers, Pattern Recognition 86: 156–171.
  • [21] Nolan, C. and Forde, E. (2016). A review of the use of fiducial markers for image-guided bladder radiotherapy, Acta Oncologica 55(5): 533–538, PMID: 26588169.
  • [22] Pata, F., Bondurri, A., Ferrara, F., Parini, D., Rizzo, G. and MISSTO (2020). Enteral stoma care during the COVID-19 pandemic: Practical advice, Colorectal Disease 22(9): 985–992, DOI: 10.1111/codi.15279.
  • [23] Romero-Ramirez, F., Muñoz-Salinas, R. and Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers, Image and Vision Computing 76: 38–47, DOI: 10.1016/j.imavis.2018.05.004.
  • [24] Romero-Ramirez, F., Muñoz-Salinas, R. and Medina-Carnicer, R. (2019). Fractal markers: A new approach for long-range marker pose estimation under occlusion, IEEE Access 7: 169908–169919.
  • [25] Rufli, M., Scaramuzza, D. and Siegwart, R. (2008). Automatic detection of checkerboards on blurred and distorted images, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 3121–3126.
  • [26] Sani, M.F. and Karimian, G. (2017). Automatic navigation and landing of an indoor AR drone quadrotor using ArUco marker and inertial sensors, 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, pp. 102–107.
  • [27] Szwoch, M., Zawiślak, R., Mik, M., Mik-Wojtczak, J. and Granosik, G. (2021). Stoma-Alert-Final—Development of IT system model supporting the process of diagnosing, treating and rehabilitating patients with stoma (image part), Project no. POIR. 04.01.04-00-0107/19, Technical report, PHIN Consulting and Lodz University of Technology, Lodz.
  • [28] Tändl, M., Stark, T., Erol, N.E., Löer, F. and Kecskeméthy, A. (2009). An object-oriented approach to simulating human gait motion based on motion tracking, International Journal of Applied Mathematics and Computer Science 19(3): 469–483, DOI: 10.2478/v10006-009-0038-y.
  • [29] Todt, E. and Torras, C. (2000). Detection of natural landmarks through multiscale opponent features, 15th International Conference on Pattern Recognition, ICPR2000, Barcelona, Spain, Vol. 3, pp. 976–979.
  • [30] Wang, Q., Zhao, J., Huo, X., Wu, L., Yang, L. F.and Li, J. and Wang, J. (2018). Effects of a home care mobile app on the outcomes of discharged patients with a stoma: A randomised controlled trial, Journal of Clinical Nursing 27(19–20): 3592–3602, DOI: 10.1111/jocn.14515.
  • [31] Zawiślak, R., Mik, M., Mik-Wojtczak, J. and Granosik, G. (2020). Stoma-Alert—Development of IT system model supporting the process of diagnosing, treating and rehabilitating patients with stoma—Project no. POIR. 04.01.01-00-0066/18-01, Technical report, PHIN Consulting and Lodz University of Technology, Lodz.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e2d3c4d-9da1-470e-b2fd-efb1eb93ad01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.