PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of microstructure and selected properties of WC-Co-Cr coatings sprayed by high-velocity oxy fuel on S235 and AZ31 substrates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this work was to carry out comparative studies of WC-Co-Cr coatings deposited using the high velocity oxy fuel (HVOF) method onto two types of substrate material: structural steel S235 and magnesium alloy AZ31. The influence of the substrate material type on the microstructure, phase composition, crystallite size, porosity, Vickers microhardness, instrumental hardness (HIT), Young’s modulus (EIT), and fracture toughness was investigated. For both substrates, the deposited coatings deposited were characterized with fine-grained and compact microstructure. The X-ray diffraction (XRD) revealed presence of following phases: WC, W2C, Co0.9W0.1, and Co3W9C4. The WC phase was the most desirable and stable one with crystallites were below 100 nm. On the other hand, the size of the W2C crystallites was below 30 nm. The coatings obtained showed porosity values equal to 2.3 ± 0.4 vol% and 2.8 ± 0.7 vol% for AZ31 and S235, respectively. The average Vickers microhardness for both types of sample was appproximately 1200 HV0.3. The average HIT values for carbide particles and metallic matrix were around 29 GPa and 6.5 GPa, respectively. In the case of EIT, it was around 620 GPa and 190 GPa for WC and Co-Cr, respectively. The differences between coatings were negligible. The EIT value for both coatings was equal to 344 ± 11 GPa. The fracture toughness was around 4.5 MPa · m1/2 in both cases. The investigations revealed that it is possible to replace steel substrate material with a much lighter equivalent, in this case AZ31 alloy, without deterioration of the coating properties.
Wydawca
Rocznik
Strony
32--41
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of TechnologyGliwice, Poland
  • Faculty of Materials Engineering, Silesian University of TechnologyKatowice, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław, University of Science and TechnologyWrocław, Poland
  • Silesian University of Technology, Department of Metallurgy and RecyclingKatowice, Poland
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of TechnologyGliwice, Poland
Bibliografia
  • [1] Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for surface protection: a review. JMMP. 2019;3:28. doi: 10.3390/jmmp3010028
  • [2] Ramezani M, Mohd Ripin Z, Pasang T, Jiang C-P. Surface engineering of metals: techniques, characterizations and applications. Metals. 2023;13:1299. doi: 10.3390/met13071299
  • [3] Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals. Boston, MA: Springer US; 2014. doi: 10. 1007/978-0-387-68991-3
  • [4] Ahmed R, Ali O, Berndt CC, Fardan A. Sliding wear of conventional and suspension sprayed nanocomposite WC-Co coatings: an invited review. J Therm Spray Tech. 2021;30:800–61. doi: 10.1007/s11666-021-01185-z
  • [5] El Rayes MM, Abdo HS, Khalil KA. Erosion—corrosion of cermet coating. Int J Electrochem Sci. 2013;8:1117–37. doi: 10.1016/S1452-3981(23)14085-5
  • [6] Liu S, Mei L, Shen M, Xia J, Xiao Y, Zhao H, et al. Effect of initial kinetic energy of Si3N4 ball on Iimpact wear behavior of high-velocity oxygen fuelzprayed WC-10Co-4Cr coating and medium-carbon steel. J Mater Eng Perform. 2023;32:7285–96. doi: 10.1007/s11665-022-07633-3
  • [7] Kumar N, Choubey VK. Effect of WC-Co and 86WC-10Co-4Cr coatings on type-II hot corrosion behaviour and microstructure characteristics at 650 degrees celsius. Surf Coat Tech. 2023;469:129812. doi: 10.1016/j.surfcoat.2023.129812
  • [8] Wang H, Wu Y, Cheng J, Zhu S, Cao M, Hong S. Effect of binder phases on the cavitation erosion behavior of HVOF sprayed WC-based coatings. Surf Coat Tech. 2023;472:129887. doi: 10.1016/j.surfcoat.2023.12 9887
  • [9] Lima RS, Marple BR. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Tech. 2007;16:40–63. doi: 10.1007/s11666-006-9010-7
  • [10] Fauchais P, Montavon G, Lima RS, Marple BR. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D: Appl Phys. 2011;44:093001. doi: 10.1088/0022-3727/44/9/093001
  • [11] Galedari SA, Mahdavi A, Azarmi F, Huang Y, McDonald A. A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures. J Therm Spray Tech. 2019;28:645–77. doi: 10.1007/s11666-019-00855-3
  • [12] Joshi, N. Advanced coatings by thermal spray processes. Technologies. 2019;7:79. doi: 10.3390/technologies7040079
  • [13] Tatka L, Pawłowski L, Winnicki M, SokołowskiP, Małachowska A, Kozerski S. Review of functionally graded thermal sprayed coatings. Appl Sci. 2020;10:5153. doi: 10.3390/app10155153
  • [14] Toma D, Brandl W, Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings. Surf Coat Tech. 2001;138:149–58. doi: 10.1016/S0257-8972(00)01141-5
  • [15] Dent AH, Depalo S, Sampath S. Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co cermets with different binder phase contents. J Therm Spray Technol. 2002;11:551–8. doi: 10.1361/105996302770348691
  • [16] Hayat MD, Singh H, He Z, Cao P. Titanium metal matrix composites: an overview. Compos A - Appl Sci Manuf. 2019;121:418–38. doi: 10.1016/j.compositesa.2019.04.005
  • [17] Sadeghi B, Cavaliere P, Pruncu CI, Balog M, Marques De Castro M, Chahal R. Architectural design of advanced aluminum matrix composites: a review of recent developments. Crit Rev Solid State Mater Sci. 2024;49:1–71. doi: 10.1080/10408436.2022.2078277
  • [18] Mazaheri Y, Khodaveysi E, Roknian M, Sheikhi M, Heidarpour A. 75Cr3C2-25NiCr and 86WC-10Co-4Cr high wear- and corrosion-resistant cermet coatings deposited on A356 substrate by high-velocity oxyfuel technique. Coatings. 2022;12:1408. doi: 10.3390/coatings12101408
  • [19] Jiang H, Zhao X, Song H, Li C. The effect of high-velocity air-fuel WC-12Co coatings on the wear and corrosion resistance of TC18 titanium alloy. Coatings. 2023;13:755. doi: 10.3390/coatings13040755
  • [20] Tan J, Ramakrishna S. Applications of magnesium and its alloys: a review. Appl Sci. 2021;11:6861. doi: 10.3390/app11156861
  • [21] Morelli S, Rombolà G, Bolelli G, Lopresti M, Puddu P, Boccaleri E, et al. Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surf Coat Technol. 2022;451:129056. doi: 10.1016/j.surfcoat.2022.129056
  • [22] Parco M, Zhao L, Zwick J, Bobzin K, Lugscheider E. Investigation of HVOF spraying on magnesium alloys. Surf Coat Technol. 2006;201:3269–74. doi: 10.1016/j.surfcoat.2006.06.047
  • [23] Yıldız F. Tribological properties of WC-12Co coating on AZ91 magnesium alloy fabricated by high velocity oxyfuel spray. High Temp Mater Proc. 2014;33:41–8. doi: 10.1515/htmp-2013-0018
  • [24] Jonda E, Szala M, Sroka M, Łatka L, Walczak M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Appl Surf Sci. 2023;608:155071. doi: 10.1016/j.apsusc. 2022.155071
  • [25] Berger L-M, Ettmayer P, Vuoristo P, Mäntylä T, Kunert W. Microstructure and properties of WC-10%Co-4% Cr spray powders and coatings: part 1. powder characterization. J Therm Spray Technol. 2001;10:311–25. doi: 10.1361/105996301770349402
  • [26] Sidhu TS, Prakash S, Agrawal RD. Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci. 2005;41:805–23. doi: 10.1007/s11003-006-0047-z
  • [27] Feitosa FRP, Gomes RM, Silva MMR, De Lima SJG, Dubois JM. Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings. Surf Coat Technol. 2018;353:171–8. doi: 10.1016/j.surfcoat.2018.08.081
  • [28] Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3
  • [29] Tricoteaux A, Duarte G, Chicot D, Le Bourhis E, Bemporad E, Lesage J. Depth-sensing indentation modeling for determination of elastic modulus of thin films. Mech Mater. 2010;42:166–74. doi: 10.1016/j.mechmat.2009.11.016
  • [30] Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol. 2013;220:131–9. doi: 10.1016/j.surfcoat.2012.07.025
  • [31] Evans AG, Wilshaw TR. Quasi-static solid particle damage in brittle solids—I. observations analysis and implications. Acta Metall. 1976;24:939–56. doi: 10.1016/0001-6160(76)90042-0
  • [32] Liu Y, Fischer TE, Dent A. Comparison of HVOF and plasma-sprayed alumina/titania coatings— microstructure, mechanical properties and abrasion behavior. Surf Coat Technol. 2003;167:68–76. doi: 10.1016/S0257-8972(02)00890-3
  • [33] Murthy JKN, Rao DS, Venkataraman B. Effect of grinding on the erosion behaviour of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear. 2001;249:592–600. doi: 10.1016/S0043-1648(01)00682-2
  • [34] Agüero A, Camón F, García de Blas J, del Hoyo JC, Muelas R, Santaballa A, et al. HVOF-Deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Tech. 2011;20:1292–309. doi: 10.1007/s11666-011-9686-1
  • [35] Ding X, Ke D, Yuan C, Ding Z, Cheng X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings. 2018;8:307. doi: 10.3390/coatings8090307
  • [36] Zhang S-H, Cho T-Y, Yoon J-H, Li M-X, Shum PW, Kwon S-C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC–CrC–Ni coatings modified by laser heat treatment. Mater Sci Eng B. 2009;162:127–34. doi: 10.1016/j.mseb.2009.03.017
  • [37] Karaoglanli AC, Oge M, Doleker KM, Hotamis M. Comparison of tribological properties of HVOF sprayed coatings with different composition. Surf Coat Technol. 2017;318:299–308. doi: 10.1016/j.surfcoat.2017.02.021
  • [38] Hong S, Wu Y, Wang B, Lin J. Improvement in tribological properties of Cr12MoV cold work die steel by HVOF sprayed WC-CoCr cermet coatings. Coatings. 2019;9:825. doi: 10.3390/coatings9120825
  • [39] Qiao L, Wu Y, Hong S, Long W, Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram Int. 2021;47:1829–36. doi: 10.1016/j.ceramint.2020.09.009
  • [40] Taheri M, Valefi Z, Zangeneh-Madar K. Influence of HVOF process parameters on microstructure and bond strength of NiCrAlY coatings. Surf Eng. 2012;28:266–72. doi: 10.1179/1743294411Y.0000000024
  • [41] Priyan MS, Azad A, Araffath SY. Influence of HVOF parameters on the wear resistance of Cr3C2-NiCr coating. J Mat Sci Surf Eng. 2016;4:6.
  • [42] Hong S, Wu YP, Gao WW, Wang B, Guo WM, Lin JR. Microstructural characterisation and microhardness distribution of HVOF sprayed WC–10Co–4Cr coating. Surf Eng. 2014;30:53–8. doi: 10.1179/1743294413Y.0000000184
  • [43] Song B, Murray JW, Wellman RG, Pala Z, Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear. 2020;442–443:203114. doi: 10.1016/j.wear.2019.203114
  • [44] Murugan K, Ragupathy A, Balasubramanian V, Sridhar K. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings. Surf Coat Technol. 2014;247:90–102. doi: 10.1016/j.surfcoat.2014.03.022
  • [45] Mishra TK, Kumar A, Sinha SK. Experimental investigation and study of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating on its sliding wear behaviour. Int J Refract Metals Hard Mater. 2021;94:105404. doi: 10.1016/j.ijrmhm.2020.105404
  • [46] Luiz LA, de Andrade J, Pesqueira CM, Siqueira IB de AF, Sucharski GB, de Sousa MJ. Corrosion behavior and galvanic corrosion resistance of WC and Cr3C2 cermet coatings in madeira river water. J Therm Spray Tech. 2021;30:205–21. doi: 10.1007/s11666-021-01152-8
  • [47] Picas JA, Punset M, Baile MT, Martín E, Forn A. Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC-CoCr coatings. Surf Coat Technol. 2011;205:S364–8. doi: 10.1016/j.surfcoat.2011.03.129
  • [48] Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, et al. Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol. 2005;14:384–90. doi: 10.1361/105996305X59378
  • [49] Pulsford J, Kamnis S, Murray J, Bai M, Hussain T. Effect of particle and carbide grain sizes on a HVOAF WC-Co-Cr coating for the future application on internal surfaces: microstructure and wear. J Therm Spray Tech. 2018;27:207–19. doi: 10.1007/s11666-017-0669-8
  • [50] Komarov P, Jech D, Tkachenko S, Slámeèka K, Dvoøák K, Èelko L. Wetting behavior of wear-resistant WC-Co-Cr cermet coatings produced by HVOF: the role of chemical composition and surface roughness. J Therm Spray Tech. 2021;30:285–303. doi: 10.1007/s11666-020-01130-6
  • [51] Lyphout C, Sato K. Screening design of hard metal feedstock powders for supersonic air fuel processing. Surf Coat Technol. 2014;258:447–57. doi: 10.1016/j.surfcoat.2014.08.055
  • [52] Górnik M, Jonda E, Łatka L, Nowakowska M, Godzierz M. Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings. MaterSci-Poland. 2021;39:545–54. doi: 10.2478/msp-2021-0047
  • [53] Venturi F, Kamnis S, Hussain T. Internal diameter HVOAF thermal spray of carbon nanotubes reinforced WC-Co composite coatings. Mater Design. 2021;202:109566. doi: 10.1016/j.matdes.2021.109566
  • [54] Picas JA, Rupérez E, Punset M, Forn A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf Coat Technol. 2013;225:47–57. doi: 10.1016/j.surfcoat.2013.03.015
  • [55] Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978–82. doi: 10.1103/PhysRev.56.978
  • [56] Tillmann W, Hagen L, Stangier D, Paulus M, Tolan M, Sakrowski R, et al. Microstructural characteristics of high-feed milled HVOF sprayed WC-Co coatings. Surf Coat Technol. 2019;374:448–59. doi: 10.1016/j.surfcoat.2019.06.012
  • [57] Kishore Mishra T, Kumar A, Sinha S, Sharma S. Investigation of sliding wear behaviour of HVOF carbide coating. Mater Today Proc. 2018;5:19539–46. doi: 10.1016/j.matpr.2018.06.315
  • [58] Eßler J, Woelk D, Utu D, Marginean G. Influence of the powder feed rate on the properties of HVOF sprayed WC-based cermet coatings. Mater Today Proc. 2023;78:227–34. doi: 10.1016/j.matpr.2022.11.120
  • [59] Rayón E, Bonache V, Salvador MD, Roa JJ, Sánchez E. Hardness and Young’s modulus distributions in atmospheric plasma sprayed WC–Co coatings using nanoindentation. Surf Coat Technol. 2011;205:4192–7. doi: 10.1016/j.surfcoat.2011.03.012
  • [60] Duszová A, Halgaš R, Bl’anda M, Hvizdoš P, Lofaj F, Dusza J, et al. Nanoindentation of WC–Co hardmetals. J Eur Ceram Soc. 2013;33:2227–32. doi: 10.1016/j.jeurceramsoc.2012.12.018
  • [61] Wang H, Qiu Q, Gee M, Hou C, Liu X, Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Mater Design. 2020;191:108586. doi: 10.1016/j.matdes.2020.108586
  • [62] Culha O, Toparli M, Celik E, Aksoy T, Soykan HS. Indentation size effect on mechanical properties of HVOF sprayed WC based cermet coatings for a roller cylinder. Surf Coat Technol. 2009;203:2052–7. doi: 10.1016/j.surfcoat.2009.02.005
  • [63] Matikainen V, Rubio Peregrina S, Ojala N, Koivuluoto H, Schubert J, Houdková Š, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surf Coat Technol. 2019;370:196–212. doi: 10.1016/j.surfcoat.2019.04.067
  • [64] Pulsford J, Venturi F, Pala Z, Kamnis S, Hussain T. Application of HVOF WC-Co-Cr coatings on the internal surface of small cylinders: effect of internal diameter on the wear resistance. Wear. 2019;432–433:202965. doi: 10.1016/j.wear.2019.202965
  • [65] Baumann I, Hagen L, Tillmann W, Hollingsworth P, Stangier D, Schmidtmann G, et al. Process characteristics, particle behavior and coating properties during HVOF spraying of conventional, fine and nanostructured WC-12Co powders. Surf Coat Technol. 2021;405:126716. doi: 10.1016/j.surfcoat.2020.126716
  • [66] Ma N, Guo L, Cheng Z,Wu H, Ye F, Zhang K. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl Surf Sci. 2014;320:364–71. doi: 10.1016/j.apsusc.2014.09.081
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e1dca54-ab18-43fe-93a3-3fdf22b652bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.