PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical Modeling of the Pipeline Uplift Mechanism in Clay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Buried pipelines are a vital infrastructure and are mainly used to transport energy carriers and other essential products. The pipes are generally buried in the upper layer of soil deposits and, therefore, are highly affected by different geo-environmental conditions. The various pathological cases recorded in the world are caused by the degradation of structures in contact with swelling soils, the fact that necessitates a full understanding and investigation of such a phenomenon. This paper presents a method for the pipeline behavior modeling based on the finite element analysis by using PLAXIS 3D software, aimed at the determination of the pipe bending moment, displacement over its length, and the evaluation of vertical stresses in soil under the pipe. A parametric study has been carried out to investigate the effect of the pipe burial depth and the soil cohesion. The finite-element results have been compared with experimental data from the literature. It was found that, unlike laboratory models, the numerical analysis can account for the internal pressure in the pipe and the depth of the pipe burial. The finite-element analysis showed that the presence of fluid pressure inside the pipe results in a decrease in the maximum swelling of the soil by about 95%. The displacement of the pipe is considerably affected by the burial depth. The vertical stress at one end of the pipe can be greater than that at the other end in the case of a pipe under internal pressure, while in the case of an empty pipe, the values are very close at both ends. The numerical analysis shows that an increase in the pipe internal pressure leads to a decrease in its vertical displacement.
Słowa kluczowe
Rocznik
Strony
119--135
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, University of Batna 2, Algeria
  • Department of Civil Engineering, University of Batna 2, Algeria
  • Department of Civil Engineering, University of Technology, Iraq
Bibliografia
  • Al-Rawas A. A., Goosen M. F. A. (2006) Expansive Soils, Taylor and Francis, London, New York.
  • Bjerrum L., Eide O. (1956) Stability of strutted excavations in clay, Géotechnique, 6 (1), 115–28.
  • Cheuk C., Take W., Bolton M., Oliveira J. (2007) Soil restraint on buckling oil and gas pipelines buried in lumpy clay fill, Engineering structures, 29, 973–982.
  • Davie J. R., Sutherland H. B. (1977) Uplift resistance of cohesive soils, Journal of the Geotechnical Engineering Division, ASCE, 103 (9), 935–52.
  • Derriche Z., Iguechtal L., Tas M. (1999) Comportement des ouvrages dans les argiles expansives d’In-Aménas, French Journal of Geotechnics, 89, 55–65.
  • Djedid A., Bekkouche A., Aissa Mamoune S.M. (2001) Identification et prévision du gonflement de quelques sols de la région de Tlemcen (Algérie), Bulletin des laboratoires des ponts et chaussées, 233, 67–75.
  • Eiksund G., Langø H., Øiseth E. (2013) Full-scale test of uplift resistance of trenched pipes, International Journal of Offshore and Polar Engineering, 23 (4), 298–306.
  • Fattah M. Y., Salim N. M., Irshayyid E. J. (2017) Influence of soil suction on swelling pressure of bentonite-sand mixtures, European Journal of Environmental and Civil Engineering, https://doi.org/10.1080/19648189.2017.1320236, Taylor & Francis.
  • Fattah M. Y., Hassan W. H., Rasheed S. E. (2018) Effect of geocell reinforcement above buried pipes on surface settlement, International Review of Civil Engineering (I.RE.C.E.), 9 (2), 86–90.
  • Gallage C., Chan D., Kodikara J. (2012) Response of a plastic pipe buried in expansive clay, ICE Proceedings Geotechnical Engineering, 165 (1), 45–57, DOI: 10.1680/geng.12.00086.
  • Gould S., Boulaire F., Kodikara J. (2009) Understanding how the Australian climate can affect pipe failure, Proceedings of Oz Water 09.AWA, Melbourne, Australia.
  • Gould, S. (2011), A study of the failure of buried reticulation pipes in reactive soils, Ph.D. Dissertation, Australia, Civil Engineering, Monash University.
  • Hachichi A., Fleureau J. M. (1999) Caractérisation et stabilisation de quelques sols gonflants d’Algérie, French Journal of Geotechnics, 86, 37–51.
  • Kassiff G., Zeitlen J. G. (1962) Behavior of pipes buried in expansive clay, Journal of the Soil Mechanics and Foundations Division, ASCE, 88, 132–148.
  • Makar J. M., Desnoyers R., McDonald S. E. (2001) Failure modes and mechanisms in gray cast iron pipe, Ontario, Canada, 1–10.
  • Maltby T. C., Calladine C. R. (1995) An investigation into upheaval buckling of buried pipelines – II Theory and analysis of experimental observations, Int. J. Mech. Sci, 37 (9), 965–983.
  • Martin C. M., White D. J. (2012) Limit analysis of the undrained bearing capacity of offshore pipelines, Géotechnique 62 (9), 847–863.
  • McGrath T. J. (1998) Pipe-soil interactions during backfill placement, Ph.D. Thesis, University of Massachusetts, Amherst, MA.
  • Ng C.W.W., Springman S. M. (1994) Uplift resistance of buried pipelines in granular materials, Proc. Centrifuge 94, Singapore, 753–758.
  • Pettibone C. H., Howard A. K. (1976) Distribution of soil pressures on concrete pipe, Journal of Pipeline Division, ASCE, 93 (2), 85–102.
  • Philipponat G. (1991) Retrait-gonflement des argiles, proposition de m´ethodologie, French Journal of Geotechnics, 57, 5—22.
  • Potter J. C. (1985) Effects of vehicles on buried high pressure pipe, Journal of Transportation Engineering, 111 (3), 224–235.
  • Rajani B., Zhan C., Kuraoka S. (1996) Pipe–soil interaction analysis of jointed water mains, Canadian Geotech J., 33 (3), 393–404.
  • Rajeev, P., Kodikara J. (2011) Numerical analysis of an experimental pipe buried in swelling soil, Computers and Geotechnics, 38, 897–904.
  • Randolph M. F., Houlsby G. T. (1984) The limiting pressure on a circular pile loaded laterally in cohesive soil, Geotechnic, 34 (4), 613–623.
  • Rjeily Y. E. A., Khouri M. F. (2014) Longitudinal stress analysis of buried pipes under expansive soils, International Journal of Science and Research (IJSR), bf 3 (11), 2593–2599.
  • Sargand S. M., Hazen G. A. (1998) Field verification of standard installation direct method for concrete pipe, Ohio Research Institute for Transportation and the Environment.
  • Schaminée P. E. L., Zorn N. F., Schotman G. J. M. (1990) Soil response for pipeline upheaval buckling analysis: Full scale laboratory tests and modelling, Offshore Technology Conference, Houston, OTC 6486 563–572.
  • Shumulevich I., Galili N., Foux A. (1985) Soil stress distribution around buried pipes, Journal of Transportation Engineering, 112 (5), 481–493.
  • Trautman C. H., O’Rourke T. D., Kulhawy F. H. (1985) Uplift force-displacement response of buried pipe, Journal of Geotechnical Eng. Division, ASCE, 111 (9), 1061–1075.
  • Vandangeon P. (1992) Exemples de sinistres en région parisienne, French Journal of Geotechnics, 58, 7–14.
  • Vu H. Q. (2002) Uncoupled and coupled solutions of volume change problems in expansive soils, Doctoral thesis, Dept Civil Engineering, University of Saskatchewan.
  • Wang, J., Haigh S. K., Thusyanthan N. I. (2009) Uplift resistance of buried pipelines in blocky clay backfill, Proc. International Offshore (Ocean) and Polar Engineering Conference, ISOPE 2009 TPC 564.
  • WSAA (2008) Australian Urban Water Industry, Water Services Association of Australia, Report card 2007/2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e1d21f5-4798-471c-9db8-9d9455fef299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.