PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chain-chain complexation and heme binding in haemoglobin with respect to the hydrophobic core structure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heme binding by proteins and protein-protein complexation are the processes strongly related to the biological activity of proteins. The mechanism of these processes has not been still recognised. These phenomena are presented using haemoglobin as the example. Half of the mature haemoglobin (one α-chain and one β-chain) treated as a dissociation step in haemoglobin degradation reveals a specific change in heme binding after dissociation. This phenomenon is the object of analysis that interprets the structure of both complexes (tetramer and dimer) with respect to their hydrophobic core structure. The results suggest the higher stability of the complex in the form of one α-chain and one β-chain with respect to the hydrophobic core.
Rocznik
Strony
179--185
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland; and Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland; and Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
Bibliografia
  • 1. Vasseur C, Baudin-Creuza V. Role of alpha-hemoglobin molecular chaperone in the hemoglobin formation and clinical expression of some hemoglobinopathies. Transfus Clin Biol 2015;22:49–57.
  • 2. Visscher KM, Kastritis PL, Bonvin AM. Non-interacting surface solvation and dynamics in protein-protein interactions. Proteins 2015;83:445–58.
  • 3. Das A, Chakrabarti J, Ghosh M. Thermodynamics of interfacial changes in a protein-protein complex. Mol Biosyst 2014;10:437–45.
  • 4. Yura K, Hayward S. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Bioinformatics 2009;25:3108–13.
  • 5. Cameron DL, Jakus J, Pauleta SR, Pettigrew GW, Cooper A. Pressure perturbation calorimetry and the thermodynamics of noncovalent interactions in water: comparison of protein-protein. protein-heme. and cyclodextrin-adamantane complexes. J Phys Chem B 2010;114:16228–35.
  • 6. Bougouffa S, Warwicker J. Volume-based solvation models outperform area-based models in combined studies of wild-type and mutated protein-protein interfaces. BMC Bioinformatics 2008;9:448.
  • 7. Guharoy M, Chakrabarti P. Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci USA 2005;102:15447–52.
  • 8. Ehrlich LP, Nilges M, Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005;58:126–33.
  • 9. Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate binding primes human tryptophan 2,3-dioxygenase for heme binding. J Phys Chem B 2017;121:7412–20.
  • 10. Falk JE, Phillips JN, Perrin DD, O’Hagan JE. Binding of haem to protein in haemoglobin and myoglobin. Nature 1959;184:1651–2.
  • 11. Keilin J. Nature of the haem-binding groups in native and denatured haemoglobin and myoglobin. Nature 1960;187:365–71.
  • 12. Benesch R. The molecular origin of the control mechanisms in haemoglobin. Bibl Haematol 1968;29:1049–55.
  • 13. Bunn HF, Jandl JH. Exchange of heme among hemoglobins and between haemoglobin and albumin. J Biol Chem 1968;243:465–75.
  • 14. Krinsky MM, Alexander NM. Thyroid peroxidase. Nature of the heme binding to apoperoxidase. J Biol Chem 1971;246:4755–8.
  • 15. Nagel RL, Gibson QH, Jenkins T. Heme binding in haemoglobin J Capetown. J Mol Biol 1971;58:643–50.
  • 16. Uchida H, Heystek J, Klapper MH. Effect of structural perturbations on the heme-binding properties of human methemoglobin A. J Biol Chem 1971;246:6843–8.
  • 17. Gersonde K. Interaction between heme group and protein structure. Hamatol Bluttransfus 1972;10:183–90.
  • 18. Fox JB Jr, Dymicky M, Wasserman AE. Heme-protein-heme interactions. Adv Exp Med Biol 1974;48:97–108.
  • 19. Caughey WS, Smythe GA, O’Keeffe DH, Maskasky JE, Smith MI. Heme A of cytochrome c oxidase. Structure and properties: comparisons with hemes B, C, and S and derivatives. J Biol Chem 1975;250:7602–22.
  • 20. Alberding N, Austin RH, Beeson KW, Chan SS, Eisenstein L, Frauenfelder H, et al. Tunneling in heme binding to heme proteins. Science 1976;192:1002–4.
  • 21. Goddard WA 3rd, Olafson BD. Theoretical studies of oxygen binding. Ann N Y Acad Sci 1981;367:419–33.
  • 22. Rai J. Mini heme-proteins: designability of structure and diversity of functions. Curr Protein Pept Sci 2017;18:1132–40.
  • 23. Lukin JA, Kontaxis G, Simplaceanu V, Yuan Y, Bax A, Ho C. Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci USA 2003;100:517–20.
  • 24. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC Struct Biol 2012;12:6.
  • 25. Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15–22.
  • 26. Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17:1477–507.
  • 27. Yi J, Thomas LM, Musayev FN, Safo MK, Richter-Addo GB. Crystallographic trapping of heme loss intermediates during the nitrite-induced degradation of human haemoglobin. Biochemistry 2011;50:8323–32.
  • 28. Seixas FA, de Azevedo WF Jr, Colombo MF. Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A(0) fully stripped of any anions. Acta Crystallogr D Biol Crystallogr 1999;55(Pt 11):1914–6.
  • 29. Brás NF, Fernandes PA, Ramos MJ. Discovery of new sites for drug binding to the hypertension-related renin-angiotensinogen complex. Chem Biol Drug Des 2014;83:427–39.
  • 30. Bertonati C, Honig B, Alexov E. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys J 2007;92:1891–9.
  • 31. Bonet J, Caltabiano G, Khan AK, Johnston MA, Corbí C, Gómez A, et al. The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study. Proteins 2006;63:65–77.
  • 32. Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002;12:41–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e1bc746-1e05-4b06-9732-9a4b5c0a5c24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.