PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamical property of hyperspace on uniform space

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
First, we introduce the concepts of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in uniform space. Second, we study the dynamical properties of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in the hyperspace of uniform space. Let (X,μ) be a uniform space, (C(X),Cμ) be a hyperspace of (X,μ) , and ƒ:X→X be uniformly continuous. By using the relationship between original space and hyperspace, we obtain the following results: (a) the map ƒ is equicontinous if and only if the induced map Cƒ is equicontinous; (b) if the induced map Cƒ is expansive, then the map f is expansive; (c) if the induced map Cƒ has ergodic shadowing property, then the map f has ergodic shadowing property; (d) if the induced map Cƒ is chain transitive, then the map ƒ is chain transitive. In addition, we also study the topological conjugate invariance of (G,h) -shadowing property in metric G - space and prove that the map S has (G,h) -shadowing property if and only if the map T has (G,h) -shadowing property. These results generalize the conclusions of equicontinuity, expansivity, ergodic shadowing property, and chain transitivity in hyperspace.
Wydawca
Rocznik
Strony
art. no. 20230264
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • School of Data Science and Software Engineering, Wuzhou University, Wuzhou 54300, P. R. China
  • Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 54300, P. R. China
Bibliografia
  • [1] X. X. Wu, Y. Luo, X. Ma, and T. Lu, Rigidity and sensitivity on uniform spaces, Topol. Appl. 252 (2019), 145–157, DOI: https://doi.org/10.1016/j.topol.2018.11.014.
  • [2] K. S. Yan and F. P. Zeng, Topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces, Acta Math. Sinica 38 (2022), no. 2, 431–432, DOI: https://doi.org/10.1007/s10114-021-0232-x.
  • [3] X. X. Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Int. J. Bifurcat. Chaos 28 (2018), no. 3, 1–9, DOI: https://doi.org/10.1142/S0218127418500438.
  • [4] F. Pirfalak, S. A. Ahmadi, X. X. Wu, and N. Kouhestani, Topological average shadowing property on uniform spaces, Qualitative Theory Dyn. Sys. 20 (2021), no. 2, 31–45, DOI: https://doi.org/10.1007/S12346-021-00466-W.
  • [5] S. A. Ahmadi, X. X. Wu, Z. H. Feng, X. Ma, and T. Lu, On the entropy points and shadowing in uniform spaces, Int. J. Bifurcat. Chaos 28 (2018), no. 12, 1–10, DOI: https://doi.org/10.1142/S0218127418501559.
  • [6] S. A. Ahmadi, X. X. Wu, and G. R. Chen, Topological chain and shadowing properties of dynamical systems on uniform spaces, Topol. Appl. 275 (2020), 1–11, DOI: https://doi.org/10.1016/j.topol.2020.107153.
  • [7] T. Rasham, A Shoaib, and S Alshoraify, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type space, Filomat 31 (2017), no. 11, 11–3263, DOI: https://doi.org/10.1142/S0218127418501559.
  • [8] W. AlOmeri, M Salmi, M Noorani, et al., α-local function and its properties in ideal topological spaces, Fasciculi Mathematici 53 (2014), 5–15, DOI: https://doi.org/10.3934/DCDS.2018043.
  • [9] W. AlOmeri and T Noiri, On almost e I continuous functions, Demonstr. Math. 54 (2021), no. 1, 168–177, DOI: https://doi.org/10.1515/dema-2021-0014.
  • [10] V. Renukadevi and S. Tamilselvi, Transitivity and sensitivity of semigroup actions on uniform spaces, Asian-European J. Math. 15 (2022), no. 12, 22–26, DOI: https://doi.org/10.1142/S1793557122502096.
  • [11] F. A. Shirazi, Z. N. Ahmadabadi, B. Tajbakhsh, and K. Tajbakhsh, Specification properties on uniform spaces, J. Dyn. Control Sys. 27 (2020), no. 2, 1–13, DOI: https://doi.org/10.1007/s10883-020-09499-x.
  • [12] P. Das and T. Das, A note on measure and expansiveness on uniform spaces, Appl. General Topol. 20 (2019), no. 1, 19–31, DOI: https://doi.org/10.4995/agt.2019.8843.
  • [13] R. Fierro, Noncompactness measure and fixed points for multi-valued functions on uniform spaces, Mediterranean J. Math. 15 (2018), no. 3, 1–13, DOI: https://doi.org/10.1007/s00009-018-1140-x.
  • [14] C. A. Morales and V. Sirvent, Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc. 368 (2015), no. 8, 5399–5414, DOI: https://doi.org/10.1090/tran/6555.
  • [15] F. Raul, A condition on uniform spaces for the existence of maximal elements and fixed points, J Fixed Point Theory Appl. 24 (2022), no. 3, 1–12, DOI: https://doi.org/10.1007/S11784-022-00976-3.
  • [16] S. Ekta and D. Tarun, Consequences of shadowing property of G-spaces, Math. Analysis 7 (2013), no. 9, 579–588, DOI: https://doi.org/10.12988/ijma.2013.13056.
  • [17] Z. J. Ji, The G-asymptotic tracking property and G-asymptotic average tracking property in the inverse limit spaces under group action, Discrete Dyn. Nature Soc. 2021 (2021), 1–6, DOI: https://doi.org/10.1155/2021/5576389.
  • [18] S. A. Ahmadi, Invariants of topological G-conjugacy on G-spaces, Math. Moravica 18 (2014), no. 1, 67–75, DOI: https://doi.org/10.5937/MatMor1401067A.
  • [19] Z. J. Ji, The research of ( )G w, -chaos and G-Lipschitz shadowing property, AIMS Math. 7 (2022), no. 6, 10180–10194, DOI: https://doi.org/10.3934/math.2022566.
  • [20] A. Shoaib, M. Arshad, T. Rasham, and M. Abbas, Unique fixed point results on closed ball for dislocated quasi G-metric spaces, Trans. A. Razmadze Math. Institute 171 (2017), no. 2, 221–230, DOI: https://doi.org/10.1016/j.trmi.2017.01.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e1b6ddc-b444-405a-8fb8-fdc40b66e09b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.