PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Potential Environmental Sustainability of Wood Ash in Normal and Geopolymer Concrete – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The production of cement for concrete has led to the emission of carbon dioxide (CO₂) into the atmosphere, which has contributed to global warming. Moreover, the excessive amount of industrial waste from biomass energy production landfilled in our environments is continuously causing sustainability challenges. However, several studies were carried out to ascertain the possibilities of using these waste materials in concrete production to address the cement and waste disposal sustainable issues simultaneously. The present study reviewed multiple studies that were carried out on wood ash (WA) application in both normal and geopolymer concrete with an emphasis on fresh, hardened, and durability properties. WA effects as a pozzolanic material are summarized for its application in mortar/concrete production. WA can be used to replace cement in mortar/concrete at up to 20% replacement level, similarly, in geopolymer production, it was revealed that WA can be effectively utilized to replace ground granulated blast furnace slag (GGBS) or pulverized fly ash (PFA) at up to 50% replacement level. The sustainability impacts of WA utilization in concrete production were presented and discussed. Results of these findings revealed its suitability as supplementary cementitious material, but still there exists a gap in its utilization in geopolymer concrete.
Słowa kluczowe
Twórcy
  • School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Faculty of Civil Engineering Technology, Universiti Malaysia, 11800 Pahang, Malaysia
Bibliografia
  • 1. Hosseini SE, Wahid MA. Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renew Sustain Energy Rev [Internet]. 2014; 40: 621–32. http://dx.doi.org/10.1016/j. rser.2014.07.214
  • 2. Medina-Serna T, Arredondo-Rea S, Gómez-Soberón J, Rosas-Casarez C, Corral-Higuera R. Effect of Curing Temperature in the Alkali-Activated Blast- Furnace Slag Paste and Their Structural Influence of Porosity. Adv Sci Technol Res J. 2016; 10(31): 74–9.
  • 3. Coppola L, Coffetti D, Crotti E, Gazzaniga G, Pas- tore T. An Empathetic Added Sustainability Index ( EASI ) for cementitious based construction materials. J Clean Prod [Internet]. 2019; 220: 475–82. https://doi.org/10.1016/j.jclepro.2019.02.160
  • 4. Huey S, Wiedmann T, Castel A, Burgh J De. Hybrid life cycle assessment of greenhouse gas emissions from cement , concrete and geopolymer concrete in Australia. J Clean Prod [Internet]. 2017; 152: 312– 20. http://dx.doi.org/10.1016/j.jclepro.2017.03.122
  • 5. Lippiatt N, Ling T, Pan S. Towards carbon-neutral construction materials : Carbonation of cement- based materials and the future perspective. J Build Eng [Internet]. 2020; 28(July 2019): 101062. https:// doi.org/10.1016/j.jobe.2019.101062
  • 6. Scrivener KL, John VM, Gartner EM. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res [Internet]. 2018; 114(June): 2–26. https:// doi.org/10.1016/j.cemconres.2018.03.015
  • 7. Yaphary YL, Lam RHW, Lau D. Chemical technologies for modern concrete production. Procedia Eng [Internet]. 2017; 172: 1270–7. Available from: http://dx.doi.org/10.1016/j.proeng.2017.02.150
  • 8. Lim JLG, Raman SN, Lai FC, Zain MFM, Hamid R. Synthesis of nano cementitious additives from agricultural wastes for the production of sustainable concrete. J Clean Prod [Internet]. 2018; 171: 1150– 60. https://doi.org/10.1016/j.jclepro.2017.09.143
  • 9. Gartner E, Sui T. Cement and Concrete Research Alternative cement clinkers. Cem Concr Res [Internet]. 2018;114:27–39. http://dx.doi.org/10.1016/j. cemconres.2017.02.002
  • 10. Miguel Á, Andrade C, Mora P, Zaragoza A. Carbon Dioxide Uptake by Cement-Based Materials : A Spanish Case Study. Appl Sci [Internet]. 2020; 1. www.mdpi.com/journal/applsci
  • 11. Gao T, Shen L, Shen M, Chen F, Liu L, Gao L. Analysis on differences of carbon dioxide emission from cement production and their major determinants. J Clean Prod [Internet]. 2015; 103: 160–70. http://dx.doi.org/10.1016/j.jclepro.2014.11.026
  • 12. Cheah CB, Samsudin MH, Ramli M, Part WK, Tan LE. The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization. J Clean Prod [Internet]. 2017; 156(October): 114–23. http://dx.doi.org/10.1016/j.jclepro.2017.04.026
  • 13. Kwek SY, Awang H, Cheah CB, Mohamad H. Development of sintered aggregate derived from POFA and silt for lightweight concrete. J Build Eng [Internet]. 2022; 49(January): 104039. https://doi. org/10.1016/j.jobe.2022.104039
  • 14. Salih MA, Farzadnia N, Abang Ali AA, Demirboga R. Development of high strength alkali activated binder using palm oil fuel ash and GGBS at am- bient temperature. Constr Build Mater [Internet]. 2015;93:289–300. http://dx.doi.org/10.1016/j. conbuildmat.2015.05.119
  • 15. Teixeira ER, Camões A, Branco FG, Aguiar JB, Fangueiro R. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Manag [Internet]. 2019; 94: 39–48. https://doi. org/10.1016/j.wasman.2019.05.044
  • 16. Amiri AM, Olfati A, Najjar S, Beiranvand P, Fard MHN. Study on Flexural of Reinforced Geopoly- mer Concrete Beam. Adv Sci Technol Res J. 2016; 10(30): 89–95.
  • 17. Mousazadeh M, Paital B, Naghdali Z, Mortezania Z, Hashemi M, Karamati Niaragh E, et al. Positive environmental effects of the coronavirus 2020 episode: a review. Environ Dev Sustain [Internet]. 2021; 23(9): 12738–60. https://doi.org/10.1007/ s10668-021-01240-3
  • 18. Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: A Malaysian case study. Renew Sustain Energy Rev. 2010; 14(2): 798–805.
  • 19. Petinrin JO, Shaaban M. Renewable energy for con-tinuous energy sustainability in Malaysia. Renew Sustain Energy Rev [Internet]. 2015; 50: 967–81. http://dx.doi.org/10.1016/j.rser.2015.04.146
  • 20. Ahmad S, Tahar RM. Selection of renewable energy sources for sustainable development of elecricity generation system using analytic hierarchy process: A case of Malaysia. Renew Energy [Internet]. 2014; 63: 458–66. http://dx.doi.org/10.1016/j. renene.2013.10.001
  • 21. Teixeira ER, Camões A, Branco FG. Valorisation of wood fly ash on concrete. Resour Conserv Recycl [Internet]. 2019; 145(December 2018): 292–310. https://doi.org/10.1016/j.resconrec.2019.02.028
  • 22. Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, et al. Biomass and bioenergy : An verview of the development potential in. Renew Sustain Energy Rev [Internet]. 2017; 79(April 2016): 1285– 302. http://dx.doi.org/10.1016/j.rser.2017.05.111
  • 23. Cheah CB, Ramli M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concreto and mortar: An overview. Resour Conserv Recycl [Internet]. 2011; 55(7): 669–85. http://dx.doi. org/10.1016/j.resconrec.2011.02.002
  • 24. Chowdhury S, Mishra M, Suganya O. The incorporation of wood waste ash as a partial cement replace-ment material for making structural grade concrete: An overview. Ain Shams Eng J. 2015; 6(2): 429–37. http://dx.doi.org/10.1016/j.asej.2014.11.005
  • 25. Tamanna K, Raman SN, Jamil M, Hamid R. Utilization of wood waste ash in construction technology: A review. Constr Build Mater [Internet]. 2020; 237: 117654. https://doi.org/10.1016/j. conbuildmat.2019.117654
  • 26. Ramasamy G, Ratnasingam J, Bakar ES, Halis R, Muttiah N. Assessment of environmental emissions from sawmilling activity in Malaysia. BioResources. 2015; 10(4): 6643–62.
  • 27. Eshun JF, Potting J, Leemans R. Wood waste minimization in the timber sector of Ghana : a systems approach to reduce environmental impact. J Clean Prod [Internet]. 2012; 26: 67–78. http://dx.doi. org/10.1016/j.jclepro.2011.12.025
  • 28. Cheah CB, Ramli M. Mechanical strength , durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Constr Build Mater [Internet]. 2012;30:320–9. http:// dx.doi.org/10.1016/j.conbuildmat.2011.12.009
  • 29. Ban CC, Ken PW, Ramli M. Mechanical and Durability Performance of Novel Self-activating Geopolymer Mortars. Procedia Eng. 2017; 171: 564–71.
  • 30. Choong JE, Onn CC, Yusoff S, Mohd NS. Life cycle assessment of waste-to-energy: Energy recovery from wood waste in Malaysia. Polish J Environ Stud. 2019; 28(4): 2593–602.
  • 31. James AK, Thring RW, Helle S, Ghuman HS. Ash Management Review—Applications of Biomass Bottom Ash. energies. 2012; 5: 3856–73.
  • 32. Lanzerstorfer C. Chemical composition and physical properties of filter fly ashes from eight grate fired biomass combustion plants. J Environ Sci (China) [Internet]. 2015;30:191–7. http://dx.doi. org/10.1016/j.jes.2014.08.021
  • 33. Mulu E, M’Arimi MM, Ramkat RC, Mecha AC. Potential of wood ash in purification of biogas. Energy Sustain Dev. 2021; 65: 45–52.
  • 34. Nunes LJR, Matias JCO, Catalão JPS. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew Sustain Energy Rev [Internet]. 2016; 53: 235–42. Ahttp:// dx.doi.org/10.1016/j.rser.2015.08.053
  • 35. Siddique R. Utilization of wood ash in concreto manufacturing. Resour Conserv Recycl [Internet]. 2012; 67: 27–33. http://dx.doi.org/10.1016/j. resconrec.2012.07.004
  • 36. Silva GJB, Santana VP, Wójcik M. Investigation on mechanical and microstructural properties of alkali- activated materials made of wood biomass ash and glass powder. Powder Technol. 2021; 377: 900–12.
  • 37. Rajamma R, Ball RJ, Tarelho LAC, Allen GC, Labrincha JA, Ferreira VM. Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater. 2009; 172(2–3): 1049–60.
  • 38. Grau F, Choo H, Hu JW, Jung J. Engineering behavior and characteristics of wood ash and sugarcane bagasse ash. Materials (Basel). 2015; 8(10): 6962–77.
  • 39. Rahul Rollakanti C, Venkata Siva Rama Prasad C, Poloju KK, Juma Al Muharbi NM, Venkat Arun Y. An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder. Mater Today Proc [Internet]. 2020; 40. Available from: https://doi.org/10.1016/j.matpr.2020.09.164
  • 40. Chowdhury S, Maniar A, Suganya OM. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. J Adv Res. 2014; 6(6): 907–13.
  • 41. ASTM C618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annu B ASTM Stand. 2010; (C): 3–6.
  • 42. De Rossi A, Simão L, Ribeiro MJ, Hotza D, Moreira RFPM. Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. J Mater Res Technol [Internet]. 2020; 9(4): 7518–28. https:// doi.org/10.1016/j.jmrt.2020.05.047
  • 43. Eliche-Quesada D, Felipe-Sesé MA, López-Pérez JA, Infantes-Molina A. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram Int [Internet]. 2017; 43(1): 463–75. http://dx.doi.org/10.1016/j. ceramint.2016.09.181
  • 44. Jindal BB, Sharma R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Constr Build Mater [Internet]. 2020; 252: 119028. https:// doi.org/10.1016/j.conbuildmat.2020.119028
  • 45. Arunkumar K, Muthukannan M, Dinesh Babu A, Hariharan AL, Muthuramalingam T. Effect on addition of Polypropylene fibers in wood ash-fly ash based geopolymer concrete. IOP Conf Ser Mater Sci Eng. 2020; 872(1).
  • 46. Cheah Chee Ban and Mahyuddin Ramli. Properties of high calcium wood ash and densified silica fume blended cement. Int J Phys Sci. 2011; 6(28): 6596–606.
  • 47. Ramos T, Matos AM, Sousa-Coutinho J. Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Constr Build Mater [Internet]. 2013; 49: 343–51. http://dx.doi. org/10.1016/j.conbuildmat.2013.08.026
  • 48. Abdulkareem OA, Matthews JC, Bakri AMMA. Strength and porosity characterizations of blended biomass wood ash-fly ash-based geopolymer mortar. AIP Conf Proc. 2018; 2045(December).
  • 49. Hassan HS, Abdel-Gawwad HA, Vásquez-García SR, Israde-Alcántara I, Flores-Ramirez N, Rico JL, et al. Cleaner production of one-part white geopoly- mer cement using pre-treated wood biomass ash and diatomite. J Clean Prod. 2019; 209: 1420–8.
  • 50. Fusade L, Viles H, Wood C, Burns C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr Build Mater [Internet]. 2019; 212: 500–13. https://doi.org/10.1016/j.conbuildmat.2019.03.326
  • 51. Stolz J, Boluk Y, Bindiganavile V. Wood ash as a supplementary cementing material in foams for thermal and acoustic insulation. Constr Build Mater [Internet]. 2019; 215: 104–13. https://doi. org/10.1016/j.conbuildmat.2019.04.174
  • 52. Rissanen J, Giosué C, Ohenoja K, Kinnunen P, Marcellini M, Letizia Ruello M, et al. The effect of peat and wood fly ash on the porosity of mortar. Constr Build Mater [Internet]. 2019; 223: 421–30. https:// doi.org/10.1016/j.conbuildmat.2019.06.228
  • 53. Carević I, Baričević A, Štirmer N, Šantek Bajto J. Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Constr Build Mater. 2020; 256.
  • 54. Hamid Z, Rafiq S. A Comparative Study on Strength of Concrete Using Wood Ash as Partial Replacement of Cement A Comparative Study on Strength of Concrete Using Wood Ash as Partial Replacement of Cement. IOP Conf Ser Mater Sci Eng. 2020;
  • 55. Rissanen J, Ohenoja K, Kinnunen P, Romagnoli M, Illikainen M. Milling of peat-wood fly ash: Effect on water demand of mortar and rheology of cement paste. Constr Build Mater. 2018; 180: 143–53. https://doi.org/10.1016/j.conbuildmat.2018.05.014
  • 56. Bajto JŠ, Štirmer N, Cerkovi S, Carevic I, Juric KK. Pilot Scale Production of Precast Concrete Elements with Wood. Materials (Basel). 2021.
  • 57. Chen HJ, Shih NH, Wu CH, Lin SK. Effects of the loss on ignition of fly ash on the properties of high- volume fly ash concrete. Sustain. 2019; 11(9).
  • 58. Hussain Z, Maqsood R, Din MI, Khan SM, Shahnaz A, Rashid M, et al. Enhanced mechanical properties of wood ash and fly ash as supplementary cementitious materials. Adv Appl Ceram [Internet]. 2017; 116(7): 355–61. https://doi.org/10.1080/17436753. 2017.1321274
  • 59. Nader V, Awwad E, Wakim J, Haya LB. A study on cement-based mixes with partial wood bottom ash replacement. Proc Inst Civ Eng Waste Resour Manag. 2020; 173(1): 15–23.
  • 60. Ristić N, Grdić Z, Topličić-ćurčić G, Grdić D, Dodevski V. Properties of self-compacting concreto produced with biomass wood ash. Teh Vjesn. 2021; 28(2): 495–502.
  • 61. Ghorpade VG. Effect of wood waste ash on the strength characteristics of concrete. Nat Environ Pollut Technol. 2012; 11(1): 121–4.
  • 62. Garcia MDL, Sousa-Coutinho J. Strength and durability of cement with forest waste bottom ash. Constr Build Mater [Internet]. 2013; 41: 897–910. http:// dx.doi.org/10.1016/j.conbuildmat.2012.11.081
  • 63. Thomas AV., Ramaswamy KP, Nair A, Padmanabhan R, Isac TK, Anilkumar V. Strength of concrete with wood ash and waste glass as partial replacement materials. IOP Conf Ser Earth Environ Sci. 2020; 491(1).
  • 64. Fořt J, Šál J, Žák J, Černý R. Assessment of wood- based fly ash as alternative cement replacement. Sustain. 2020; 12(22): 1–16.
  • 65. Vijay K, Hari Babu K, Vidya Indrasena Y. Effect of Wood-Ash as Partial Replacement to Cement on Performance of Concrete. IOP Conf Ser Earth Environ Sci. 2021; 796(1).
  • 66. Sigvardsen NM, Geiker MR, Ottosen LM. Reaction mechanisms of wood ash for use as a partial cement replacement. Constr Build Mater [Internet]. 2021; 286: 122889. https://doi.org/10.1016/j. conbuildmat.2021.122889
  • 67. Gabrijel I, Rukavina MJ, Štirmer N. Influence of wood fly ash on concrete properties through filling effect mechanism. Materials (Basel). 2021; 14(23).
  • 68. Kannan V, Raja Priya P. Evaluation of the perme- ability of high strength concrete using metakaolin and wood ash as partial replacement for cement. SN Appl Sci [Internet]. 2021; 3(1): 1–8. https://doi. org/10.1007/s42452-020-04024-y
  • 69. Cheah CB, Samsudin MH. Optimization on the Hybridization Ratio of Ground Granulated Blast Furnace Slag and High Calcium Wood Ash (GGBS – HCWA) for the Fabrication of Geopolymer Mortar. Adv Environ Biol [Internet]. 2015; 9(94): 22–5. http://www.aensiweb.com/AEB/
  • 70. Cheah CB, Part WK, Ramli M. The long term engineering properties of cementless building block work containing large volume of wood ash and coal fly ash. Constr Build Mater [Internet]. 2017; 143: 522–36. http://dx.doi.org/10.1016/j. conbuildmat.2017.03.162
  • 71. Abdulkareem OA, Ramli M, Matthews JC. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Compos Part B Eng [Internet]. 2019;174(May):106941. https://doi. org/10.1016/j.compositesb.2019.106941
  • 72. Arunkumar K, Muthukannan M, Kumar AS, Ganesh AC, Devi RK. Production of eco-friendly geopolymer concrete by using waste wood ash for a sustainable environment. Pollution. 2021; 7(4): 993–1006.
  • 73. Cheah CB, Part WK, Ramli M. The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Constr Build Mater [Internet]. 2015; 88: 41–55. http://dx.doi.org/10.1016/j. conbuildmat.2015.04.020
  • 74. Cheah CB, Samsudin MH, Ramli M, Part WK, Tan LE. The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization. J Clean Prod [Internet]. 2017; 156: 114–23. http:// dx.doi.org/10.1016/j.jclepro.2017.04.026
  • 75. Owaid HM, Al-Rubaye MM, Al-Baghdadi HM. Use of waste paper ash or wood ash as substitution to fly ash in production of geopolymer concrete. Sci Rev Eng Environ Sci. 2021; 30(3): 464–76.
  • 76. Yin K, Ahamed A, Lisak G. Environmental perspectives of recycling various combustion ashes in cement production – A review. Waste Manag [Internet]. 2018; 78: 401–16. https://doi.org/10.1016/j. wasman.2018.06.012
  • 77. Horsakulthai V, Phiuvanna S, Kaenbud W. Investigation on the corrosion resistance of bagasserice husk-wood ash blended cement concrete by impressed voltage. Constr Build Mater [Internet]. 2011; 25(1): 54–60. http://dx.doi.org/10.1016/j. conbuildmat.2010.06.057
  • 78. Aprianti E, Shafigh P, Bahri S, Farahani JN. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater [Internet]. 2015; 74: 176–87. http://dx.doi.org/10.1016/j. conbuildmat.2014.10.010
  • 79. Nodehi M, Taghvaee VM. Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics [Internet]. Vol. 2, Circular Economy and Sustainability. Springer International Publishing; 2022; 987–1020. https://doi.org/10.1007/s43615-022-00149-x
  • 80. Sotiles AR, Wypych F. First synthesis of a nanohybrid composed of a layered double hydroxide of Zn2Al intercalated with SO42−/Na+/Ag+ and decorated with Ago nanoparticles. J Solid State Chem [Internet]. 2020; 288(March): 121394. https://doi. org/10.1016/j.jssc.2020.121394
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e0de2e3-5986-4aca-9209-34e4e711788a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.