PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On application of fractal magnetization in Curie depth estimation from magnetic anomalies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As an independent geothermal proxy, the Curie-point depth has important geodynamic implications, but its estimation from magnetic anomalies requires an understanding of the spatial correlation of source magnetization, mathematically characterized by a fractal exponent. In this paper, we show that fractal exponent and Curie depth are so strongly inter-connected that attempts to simultaneous or iterative estimation of both of them often turn out to be futile. In cases of true large Curie depths, the iterative “de-fractal” method has a tendency of overcorrecting fractal exponents and thereby producing erroneously small Curie depths and smearing out true geological trends. While true fractal exponent can no way be constant over a large area, a regionally fxed fractal exponent is better than any mathematical treatments that are beyond the limit of data resolution and the underlying physics.
Czasopismo
Rocznik
Strony
1319--1327
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Marine Sciences, Zhejiang University, Zhoushan 316021, China
  • Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
autor
  • Department of Marine Sciences, Zhejiang University, Zhoushan 316021, China
autor
  • Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
Bibliografia
  • 1. Audet P, Gosselin JM (2019) Curie depth estimation from magnetic anomaly data: a re-assessment using multitaper spectral analysis and Bayesian inference. Geophys J Int 218:494–507. https://doi.org/10.1093/gji/ggz166
  • 2. Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76:L11–L22. https://doi.org/10.1190/1.3560017
  • 3. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, pp 1–464
  • 4. Bouligand C, Glen JMG, Blakely RJ (2009J) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res 114:B11104. https://doi.org/10.1029/2009JB006494
  • 5. Briggs IC (1974) Machine contouring using minimum curvature. Geophysics 9:39–48
  • 6. Bryan TS (2008) The geysers of Yellowstone. University Press of Colorado, Niwot, pp 1–456
  • 7. Decker ER, Heasler HP, Buelow KL, Baker KH, Hallin JS (1988) Significance of past and recent heat-flow and radioactivity studies in the Southern Rocky Mountains region. Colo Geol Soc Am Bull 100:1851–1885
  • 8. Friedman SA, Feinberg JM, Ferré EC, Demory F, Martín-Hernández F, Conder JA, Rochette P (2014) Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior. Tectonophysics 624–625:15–23
  • 9. Gaudreau É, Audet P, Schneider DA (2019) Mapping Curie depth across western Canada from a wavelet analysis of magnetic anomaly data. J Geophys Res 124:4365–4385. https://doi.org/10.1029/2018JB016726
  • 10. Kucks RP, Hill PL, Ponce DA (2006) Nevada magnetic and gravity maps and data: a website for the distribution of data, U.S. geological survey data series, 234. https://pubs.usgs.gov/ds/2006/234. Accessed Aug 2017
  • 11. Lachenbruch AH (1968) Preliminary geothermal model of the Sierra Nevada. J Geophys Res 73:6977–6988
  • 12. Li C-F, Wang J (2018) Thermal structures of the Pacific lithosphere from magnetic anomaly inversion. Earth Planet Phys 2:52–66
  • 13. Li C-F, Chen B, Zhou Z (2009) Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci China Ser D Earth Sci 52:984–993. https://doi.org/10.1007/s11430-009-0096-x
  • 14. Li C-F, Shi XB, Zhou ZY, Li JB, Geng JH, Chen B (2010) Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys J Int 182:1229–1247. https://doi.org/10.1111/j.1365-246X.2010.04702.x
  • 15. Li C-F, Wang J, Lin J, Wang T (2013G) Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem Geophys Geosyst 14:5078–5105. https://doi.org/10.1002/2013GC004896
  • 16. Li C-F, Lu Y, Wang J (2017) A global reference model of Curie-point depths based on EMAG2. Sci Rep 7:45129. https://doi.org/10.1038/srep45129
  • 17. Manea M, Manea VC (2011) Curie point depth estimates and correlation with subduction in Mexico. Pure Appl Geophys 168:1489–1499
  • 18. Mather B, Fullea J (2019) Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data. Solid Earth 10:839–850. https://doi.org/10.5194/se-2019-9
  • 19. Maus S, Gordan D, Fairhead D (1997) Curie-temperature depth estimation using a self-similar magnetization model. Geophys J Int 129:163–168. https://doi.org/10.1111/j.1365-246X.1997.tb00945.x
  • 20. Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, von Frese RRB, Gaina C, Golynsky S, Kucks R, Luhr H, Milligan P, Mogren S, Müller D, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thébault E, Caratori Tontini F (2009G) EMAG2: a 2-arc-minute resolution earth magnetic anomaly grid compiled from satellite, airborne and marine magnetic measurements. Geochem Geophys Geosyst 10:Q08005. https://doi.org/10.1029/2009GC002471
  • 21. Negi JG, Agrawal PK, Pandey OP (1987) Large variation of Curie depth and lithospheric thickness beneath the Indian subcontinent and a case for magnetothermometry. Geophys J R Astr Soc 88:763–775
  • 22. North American Magnetic Anomaly Group (NAMAG) (2002) Digital data grids for the magnetic anomaly map of North America, U.S. geological survey open file rep. 02–414. https://pubs.usgs.gov/of/2002/ofr-02-414/. Accessed Aug 2017
  • 23. O’Reilly W (1984) Rock and mineral magnetism. Blackie Academy and Professor, London
  • 24. Okubo Y, Graf RJ, Hansen RO, Fytikas M (1985) Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics 53:481–494. https://doi.org/10.1190/1.1441926
  • 25. Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169:421–434
  • 26. Ravat D, Morgan P, Lowry A (2016) Geotherms from the temperature-depth–constrained solutions of 1-D steady-state heat-flow equation. Geosphere 12:1187–1197. https://doi.org/10.1130/GES01235.1
  • 27. Salem A, Green C, Ravat D, Singh KH, East P, Fairhead JD, Mogren S, Biegert E (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624–625:75–86
  • 28. Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermooxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185
  • 29. Tanaka A, Ishikawa Y (2002) Temperature distribution and focal depth in the crust of the northeastern Japan. Earth Planets Space 54(11):1109–1113
  • 30. Tanaka A, Ishikawa Y (2005) Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: the Japanese islands case study. Phys Earth Planet Int 152(4):257–266
  • 31. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470. https://doi.org/10.1016/S0040-1951(99)00072-4
  • 32. Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, New York
  • 33. Wang J, Li C-F (2015) Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle. Tectonophysics 638:112–125. https://doi.org/10.1016/j.tecto.2014.11.002
  • 34. Wang J, Li CF, Lei JS, Zhang GW (2016) Relationship between seismicity and crustal thermal structure in North China. Acta Seismol Sin 38(4):618–631
  • 35. Wessel P, Smith WHF (1995) New version of the generic mapping tools (GMT) version 3.0 released. Trans Am Geophys Union EOS 76:329
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e073379-ec60-47c1-92ac-48ff8a2d4ca8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.