Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a study investigating the problem of safety in dry milling magnesium alloy AZ91D. Selected indicators of safe machining were analyzed, including time to ignition, ignition temperature, chip mass and morphology. Experiments were performed using carbide end mills with a variable edge helix angle. It was observed that magnesium alloys could be dry milled without the risk of chip ignition. The milling process conducted with the axial depth of cut ap set to 6 mm was found to be optimum (a great amount of leading fraction A was produced). Unfortunately, however, some machining conditions proved to be inductive to the formation of chip powder known as magnesium dust. For most cases, chips obtained using the tool with λs 50° had higher unit mass than those obtained with λs 20°. Metallographic images of chips confirmed the safe range of the machining parameters employed (no partial melting or burn marks were observed). Determined on a specially designed test stand outside of the machine tool, time to ignition can be an effective parameter for performing simplified chip ignition simulations.
Wydawca
Rocznik
Tom
Strony
181--191
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Habrat D., Stadnicka D., Habrat W. Analysis of the legal risk in the scientific experiment of the machining of magnesium alloys. Lecture Notes in Mechanical Engineering 2019: 421–430.
- 2. Zagórski I., Kuczmaszewski J. Temperature measurements in the cutting zone, mass, chip fragmentation and analysis of chip metallography images during AZ31 and AZ91HP magnesium alloy milling. Aircraft Engineering and Aerospace Technology 2018; 90: 496–505.
- 3. Zgórniak P., Grdulska A. Investigation of temperature distribution during milling process of AZ91HP magnesium alloys, Mechanics and Mechanical Engineering 2012; 16(1): 33–40.
- 4. Zgórniak P., Stachurski W., Ostrowski D. Application of thermographic measurements for the determination of the impact of selected cutting parameters on the temperature in the workpiece during milling process, Strojniški vestnik – Journal of Mechanical Engineering 2016; 62(11): 657–664.
- 5. Du, Y., Yue, C., Li, X., Liu, X., Liang, S.Y. Research on breakage characteristics in side milling of titanium alloy with cemented carbide end mill. International Journal of Advanced Manufacturing Technology 2021; 117(11–12): 3661–3679.
- 6. Yang, Z., Zhang, D., Huang, X., Yao, C., Ren, J. The simulation of cutting force and temperature in high-speed milling of Ti-6Al-4V. Advanced Matrials Research 2010; 139–141: 768–771.
- 7. Nieslony P., Grzesik W., Bartoszuk M., Habrat W. Analysis of mechanical characteristics of face milling process of Ti6Al4V alloy using experimental and simulation data. Journal of Machine Engineering 2016; 16(3): 58–66.
- 8. Sun, J., Wong, Y.S., Rahman, M., Wang Z.G., Neo K.S., Tan, C.H., Onozuka, H. Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Machining Science and Technology 2006; 10(3): 355–370.
- 9. Obermair F. High speed minimum quantity lubrication machining of magnesium. In: Proc. of the 6th International Conference Magnesium Alloys and Their Applications, Edited by K.U. Kainer, Weinheim 2003.
- 10. Kuczmaszewski J., Zagórski I., Zgórniak P. Chip temperature measurement in the cutting area during rough milling magnesium alloys with a Kordell geometry end mill. Advances in Science and Technology Research Journal 2022; 16(2): 109–119.
- 11. Kuczmaszewski J., Zagórski I. Methodological problems of temperature measurement in the cutting area during milling magnesium alloys. Management and Production Engineering Review 2013; 4: 26–33.
- 12. Kuczmaszewski J., Zagórski I., Zgórniak P. Thermographic study of chip temperature in high-speed dry milling magnesium alloys. Management and Production Engineering Review 2016; 7: 86–92.
- 13. Fang F.Z., Lee L.C., Liu X.D. Mean flank temperature measurement in high speed dry cutting. Journal of Materials Processing Technology 2005; 167: 119–123.
- 14. Hou J., Zhao N., Zhu S. Influence of Cutting Speed on Flank Temperature during Face Milling of Magnesium Alloy. Materials and Manufacturing Processes 2011; 26: 1059–1063.
- 15. Karimi M., Nosouhi R. An experimental investigation on temperature distribution in high-speed milling of AZ91C magnesium alloy. AUT Journal of Mechanical Engineering 2021; 5: 1–5.
- 16. Guo Y.B., Salahshoor M. Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium–calcium implant alloys. CIRP Annals – Manufacturing Technology 2010; 59: 151–154.
- 17. Guo Y., Liu Z. Sustainable High Speed Dry Cutting of Magnesium Alloys, Materials Science Forum Online 2012; 723: 3–13.
- 18. Akyuz B. Machinability of magnesium and its alloys. The Online Journal of Science and Technology 2011; 1: 31–38.
- 19. Hou J.Z., Zhou W., Zhao N. Methods for prevention of ignition during machining of magnesium alloys. Key Engineering Materials 2010; 447–448: 150–154.
- 20. Zhao N., Hou J., Zhu S.: Chip ignition in research on high-speed face milling AM50A magnesium alloy. In: Proc. of 2nd International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China 2011.
- 21. Lin P.-Y., Zhou H., Li W., Li W.-P., Sun N., Yang R. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy. Corrosion Science 2008; 50(9): 2669–2675.
- 22. Liu M., Shih D.S., Parish C., Atrens A. The ignition temperature of Mg alloys WE43, AZ31 and AZ91. Corrosion Science 2012; 54(1): 139–142.
- 23. Ravi Kumar N.V., Blandin J.J., Suery M., Grosjean E. Effect of alloying elements on the ignition resistance of magnesium alloys. Scripta Materialia 2003; 49(3): 225–230.
- 24. Zhou H., Li W., Wang M.X., Zhao Y. Study on ignition proof AZ91D magnesium alloy chips with cerium addition. Journal of Rare Earth 2005; 23(4): 466–469.
- 25. Zagórski I., Kuczmaszewski J. Study of chip ignition and chip morphology after milling of magnesium alloys. Advances in Science and Technology Research Journal 2016; 10(32): 101–108.
- 26. Gziut O., Kuczmaszewski J., Zagórski I. Analysis of chip fragmentation in AZ91HP alloy milling with respect to reducing the risk of chip. Eksploatacja i Niezawodność-Maintenance and Reliability 2016; 18(1): 73–79.
- 27. Gziut O., Kuczmaszewski J., Zagórski I. Impact of depth of cut on chip formation in AZ91HP magnesium alloy milling with tools of varying cutting edge geometry. Advances in Science and Technology Research Journal 2015; 9(26): 49–56.
- 28. Józwik J., Łukasz M. Chip formation aided by high pressure cutting-tool lubricant during turning. IT in technology 2008; 2: 140–159.
- 29. Kuczmaszewski J., Zagórski I., Gziut O., Legutko S., Krolczyk G.M. Chip fragmentation in the milling of AZ91HP magnesium alloy. Strojniski Vestnik – Journal of Mechanical Engineering 2017; 63(11): 628–642.
- 30. Kuczmaszewski J., Zagórski I., Dziubińska A. Investigation of ignition temperature, time to ignition and chip morphology after the high-speed dry milling of magnesium alloys. Aircraft Engineering and Aerospace Technology 2016; 88: 389–396.
- 31. PN-ISO 3685:1996. Tool-life testing with singlepoint turning tools (Badanie trwałości noży tokarskich punktowych – in Polish).
- 32. ISO 3685:1993. Tool-life testing with single-point turning tools. International Organization for Standardization, Geneva.
- 33. Kuczmaszewski J., Zagórski I., Kłosowska M. Time and temperature test stand for chip ignition. Utility model application number U1 127466. Bulletin of the Patent Office: Inventions and Utility Models 2019; 7:47. (Stanowisko badawcze czasu i temperatury do zapłonu wiórów. Nr zgłoszenia wzoru użytkowego U1 127466. Biuletyn Urzędu Patentowego: Wynalazki i Wzory użytkowe 2019; 7:47 (in Polish).
- 34. http://www.czaki.pl/, access date 9.04.2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dfeda0b-45a0-425d-a769-d749868b1979