Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study enables justified selection of suitable sensors for the extended cross-float method for the calibration of piston gauges. Three sensor types were tested: a triangulation laser sensor, a capacitive sensor, and a high-precision accelerometer. The extended cross-float method is employed to avoid determining the equilibrium point between interconnected manometers during piston gauge calibration, assessing the fall rate and displacement of the piston. Thus, this makes the parameters above the most relevant and crucial for the mentioned method. The performance of each sensor was evaluated under identical load-pressure conditions to ascertain the accuracy in measuring piston displacement and fall rate. The laser sensor demonstrated the highest measurement precision, while the capacitive sensor effectively smoothed data, mitigating the impact of surface irregularities. Despite its ease of use and installation, the accelerometer showed notable data noise and less accurate results than the other sensors. These findings provide a comparative analysis of sensor performance, highlighting their respective advantages and limitations in the context of high-precision pressure measurement applications.
Czasopismo
Rocznik
Tom
Strony
863--873
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
autor
- Institute of Metrology and Measuring Systems, Faculty of Mechatronics, Warsaw University of Technology, ul. św. A. Boboli 8, 02-525 Warsaw, Poland
- Central Office of Measures, ul. Elektoralna 2, 00-139 Warsaw, Poland
autor
- Łukasiewicz Research Network - Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202; 02-486 Warsaw, Poland
autor
- Institute of Metrology and Measuring Systems, Faculty of Mechatronics, Warsaw University of Technology, ul. św. A. Boboli 8, 02-525 Warsaw, Poland
autor
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės g. 25, LT-10105 Vilnius, Lithuania
Bibliografia
- [1] Sabuga, W. (2024). Recent research results on piston gauges. Proceedings of the 7th IMEKO TC16 Conference on Pressure and Vacuum Measurement, 1-6. https://doi.org/10.21014/tc16-2023.11
- [2] Fischer, J., Fellmuth, B., Gaiser, C., Zandt, T., Pitre, L., Sparasci, F., Plimmer, M. D., de Podesta, M., Underwood, R., Sutton, G., Machin, G., Gavioso, R. M., Madonna Ripa, D., Steur, P. P. M., Qu, J., Feng, X. J., Zhang, J., Moldover, M. R., Benz, S. P., . . . del Campo, D. (2018). The Boltzmann project. Metrologia, 55(2), R1-R20. https://doi.org/10.1088/1681-7575/aaa790
- [3] Sabuga, W., Priruenrom, T., Haines, R., & Bair, M. (2011). Design and Evaluation of Pressure Balances with 1 ·10-6 Uncertainty for the Boltzmann Constant Project. PTB Mitteilungen, 121(3), 256-259.
- [4] Jusko, O., Bastam, D., Neugebauer, M., Reimann, H., Sabuga, W., & Priruenrom, T. (2010). Final Results of the Geometrical Calibration of the Pressure Balances to be Used for the new Determination of the Boltzmann Constant. Key Engineering Materials, 437, 150-154. https://doi.org/10.4028/www.scientific.net/kem.437.150
- [5] Y. Yang, R. G. Driver, J. S. Quintavalle, J. Scherschligt, K. Schlatter, J. E. Ricker, G. F. Strouse, D. A. Olson, J. H. Hendricks, An integrated and automated calibration system for pneumatic piston gauges. Measurement 134, 1-5 (2019). https://www.doi.org/10.1016/j.measurement.2018.10.050
- [6] Hamarat, A., Yılmaz, R., Durgut, Y., & Demir, E. (2023). Calibration of pressure balances. AIP Conference Proceedings, 2803, 030006. https://doi.org/10.1063/5.0143464
- [7] Kajikawa, H., Ide, K., & Kobata, T. (2011). Method for altering deformational characteristics of controlled-clearance piston-cylinders. Measurement, 44(2), 359-364. https://doi.org/10.1016/j.measurement.2010.10.011
- [8] Kumar, R., Yadav, K., Dubey, P.K., Zafer, A., Kumar, A., & Yadav, S. (2024). Design, Development, and Analysis of Ultrasonic Fall Rate Measuring System for Primary Pressure Standard. Journal of the Institution of Engineers (India): Series C, 105(1), 31-39. https://doi.org/10.1007/s40032-023-01019-7
- [9] Simpson, D.I. (1994). Computerized Techniques for Calibrating Pressure Balances. Metrologia, 30(6), 655-658. https://doi.org/10.1088/0026-1394/30/6/021
- [10] Brzozowski, A., Szewczyk, R., Gazda, P. & Nowicki, M. (2023). The Measurement Method of a Piston Fall Rate. Pomiary Automatyka Robotyka, 4(27), 65-69. https://www.doi.org/10.14313/PAR_250/65
- [11] Durgut, Y. (2022). Metrological characterisation of force-balanced piston gauge up to 15,000 Pa pressure range. MAPAN, 38(1), 147-159. https://doi.org/10.1007/s12647-022-00586-x
- [12] Thakur, V. N., Sharma, R., Kumar, H., Omprakash, Vijayakumar, D. A., Yadav, S., & Kumar, A. (2020). On long-term stability of an air piston gauge maintained at National Physical Laboratory, India. Vacuum, 176, 109357. https://doi.org/10.1016/j.vacuum.2020.109357
- [13] Xu, P., Li, R. J., Zhao, W.K., Chang, Z. X., Ma, S. H., & Fan, K. C. (2021). Development and verification of a high-precision laser measurement system for straightness and parallelism measurement. Metrology and Measurement Systems, 479-495. https://doi.org/10.24425/mms.2021.137132
- [14] Yinggang, Z., Shanhui, W., Guangping, Y., & Zhou, Y. (2010). Capacitive sensor high-precision measurement system. 2010 2nd IEEE International Conference on Information Management and Engineering, 55-60. https://doi.org/10.1109/icime.2010.5477600
- [15] Berkovic, G., & Shafir, E. (2012). Optical methods for distance and displacement measurements. Advances in Optics and Photonics, 4(4), 441. https://doi.org/10.1364/aop.4.000441
- [16] Grgec Bermanec, L., Katic, M., & Zvizdic, D. (2019). Characterization of gas pressure balances at LPM. Measurement, 136, 689-693. https://doi.org/10.1016/j.measurement.2018.10.070
- [17] Grgec Bermanec, L., Zvizdic, D., & Simunovic, V. (2014). Development of Method for Determination of Pressure Balance Piston Fall Rate. ACTA IMEKO, 3(2), 44. https://doi.org/10.21014/acta_imeko.v3i2.105
- [18] Kobata, T. (2011). Multiple cross-float system for calibrating pressure balances. PTB Mitteilungen, 121(3), 274-277.
- [19] Vámossy, W., & Koçaş, I. (2011). Evaluation of cross-float measurements with pressure balances - Results of EURAMET project. PTB-Mitteilungen, 121(3), 295.
- [20] Hong, B., Pan, Z., Gu, S., & Zhang, Z. (2018). An Investigation of the High Pressure Controlled Clearance Dead Weight Piston Gauge. 2018 5th International Conference on Systems and Informatics (ICSAI), 734-738. https://doi.org/10.1109/icsai.2018.8599365
- [21] Muset, B., & Emerich, S. (2012). Distance measuring using accelerometer and gyroscope sensors. Carpathian Journal of Electronic and Computer Engineering, 5, 83-86. https://ieec.utcluj.ro/cjece/web/CJECE_VOL5_2012/17_Muset.pdf
Uwagi
The work was created as a result of the implementation of the "Implementation Doctorate" program financed by the Ministry of Education and Science.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dfde5b7-bc9d-43a3-b0fa-e9e2b02c98eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.