PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controllable propagation of Pearcey–Gaussian beams in photorefractive media with fractional Schrödinger equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Taking the fractional Schrödinger equation as the theoretical model, the evolution behavior of the Pearcey–Gaussian beam in the photorefractive medium is studied. The results show that breathing solitons are generated when the nonlinear effect and the diffraction effect are balanced with each other. Nonlinear coefficients, Lévy index and beams amplitude affect breathing period of the soliton and maximum peak intensity. Within a certain range, the breathing period of the soliton decreases with the increase of the nonlinear coefficient and the Lévy index. However when the beams amplitude increases, the breathing period and the maximum peak intensity of the soliton increase. Under the photorefractive effect, due to the bidirectional self-acceleration property of the Pearcey beam, the solitons formed will propagate vertically. These properties can be used to manipulate the beam and have potential applications in optical switching, plasma channeling, particle manipulation, etc.
Czasopismo
Rocznik
Strony
627--638
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Bibliografia
  • [1] ANGUIANO-MORALES M., MARTÍNEZ A., ITURBE-CASTILLO M.D., CHÁVEZ-CERDA S., ALCALÁ-OCHOA N., Self-healing property of a caustic optical beam, Applied Optics 46(34), 2007, pp. 8284–8290, DOI: 10.1364/AO.46.008284.
  • [2] ANGUIANO-MORALES M., Transformation of Bessel beams by means of a cylindrical lens, Applied Optics 48(25), 2009, pp. 4826–4831, DOI: 10.1364/AO.48.004826.
  • [3] VAVELIUK P., LENCINA A., RODRIGO J.A., MATOS O.M., Caustics, catastrophes, and symmetries in curved beams, Physical Review A 92(3), 2015, article no. 033850, DOI: 10.1103/PhysRevA.92.033850.
  • [4] BERRY M.V., BALAZS N.L., Nonspreading wave packets, American Journal of Physics 47(3), 1979, pp. 264–267, DOI: 10.1119/1.11855.
  • [5] SIVILOGLOU G.A., BROKY J., DOGARIU A., CHRISTODOULIDES D.N., Observation of accelerating Airy beams, Physical Review Letters 99(21), 2007, article no. 213901, DOI: 10.1103/PhysRevLett.99.213901.
  • [6] SIVILOGLOU G.A., CHRISTODOULIDES D.N., Accelerating finite energy Airy beams, Optics Letters 32(8), 2007, pp. 979–981, DOI: 10.1364/OL.32.000979.
  • [7] BROKY J., SIVILOGLOU G.A., DOGARIU A., CHRISTODOULIDES D.N., Self-healing properties of optical Airy beams, Optics Express 16(17), 2008, pp. 12880–12891, DOI: 10.1364/OE.16.012880.
  • [8] CHU X., ZHOU G., CHEN R., Analytical study of the self-healing property of Airy beams, Physical Review A 85(1), 2012, article no. 013815, DOI: 10.1103/PhysRevA.85.013815.
  • [9] CAO R., HUA Y., MIN C., ZHU S., YUAN X.-C., Self-healing optical pillar array, Optics Letters 37(17), 2012, pp. 3540–3542, DOI: 10.1364/OL.37.003540.
  • [10] BAUMGARTL J., MAZILU M., DHOLAKIA K., Optically mediated particle clearing using Airy wavepackets, Nature Photonics 2, 2008, pp. 675–678, DOI: 10.1038/nphoton.2008.201.
  • [11] CHRISTODOULIDES D.N., Riding along an Airy beam, Nature Photonics 2, 2008, pp. 652–653, DOI: 10.1038/nphoton.2008.211.
  • [12] BAUMGARTL J., HANNAPPEL G.M., STEVENSON D.J., DAY D., GU M., DHOLAKIA K., Optical redistribution of microparticles and cells between microwells, Lab on a Chip 9(10), 2009, pp. 1334–1336, DOI: 10.1039/B901322A.
  • [13] DASGUPTA R., AHLAWAT S., VERMA R.S., GUPTA P.K., Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode, Optics Express 19(8), 2011, pp. 7680–7688, DOI: 10.1364/OE.19.007680.
  • [14] JIA S., VAUGHAN J.C., ZHUANG X., Isotropic three-dimensional super-resolution imaging with a self-bending point spread function, Nature Photonics 8(4), 2014, pp. 302–306, DOI: 10.1038/nphoton.2014.13.
  • [15] VETTENBURG T., DALGARNO H.I.C., NYLK J., COLL-LLADÓ C., FERRIER D.E.K., ČIŽMÁR T., GUNN-MOORE F.J., DHOLAKIA K., Light-sheet microscopy using an Airy beam, Nature Methods 11, 2014, pp. 541–544, DOI: 10.1038/nmeth.2922.
  • [16] PEARCEY T., XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 7 37(268), 1946, pp. 311–317, DOI: 10.1080/14786444608561335.
  • [17] RING J.D., LINDBERG J., MOURKA A., MAZILU M., DHOLAKIA K., DENNIS M.R., Auto-focusing and self-healing of Pearcey beams, Optics Express 20(17), 2012, pp. 18955–18966, DOI: 10.1364/OE.20.018955.
  • [18] DENG D., CHEN C., ZHAO X., CHEN B., PENG X., ZHENG Y., Virtual source of a Pearcey beam, Optics Letters 39(9), 2014, pp. 2703–2706, DOI: 10.1364/OL.39.002703.
  • [19] KOVALEV A.A., KOTLYAR V.V., ZASKANOV S.G., PORFIREV A.P., Half Pearcey laser beams, Journal of Optics 17(3), 2015, article no. 035604, DOI: 10.1088/2040-8978/17/3/035604.
  • [20] BOUFALAH F., DALIL-ESSAKALI L., NEBDI H., BELAFHAL A., Effect of turbulent atmosphere on the on-axis average intensity of Pearcey–Gaussian beam, Chinese Physics B 25(6), 2016, article no. 064208, DOI: 10.1088/1674-1056/25/6/064208.
  • [21] DESCHAMPS G.A., Gaussian beam as a bundle of complex rays, Electronics Letters 7(23), 1971, pp. 684–685, DOI: 10.1049/el:19710467.
  • [22] LASKIN N., Fractional quantum mechanics, Physical Review E 62(3), 2000, pp. 3135–3145, DOI: 10.1103/PhysRevE.62.3135.
  • [23] LASKIN N., Fractional quantum mechanics and Lévy path integrals, Physics Letters A 268(4–6), 2000, pp. 298–305, DOI: 10.1016/S0375-9601(00)00201-2.
  • [24] LASKIN N., Fractional Schrödinger equation, Physical Review E 66(5), 2002, article no. 056108, DOI: 10.1103/PhysRevE.66.056108.
  • [25] LONGHI S., Fractional Schrödinger equation in optics, Optics Letters 40(6), 2015, pp. 1117–1120, DOI: 10.1364/OL.40.001117.
  • [26] HUANG X.W., DENG Z.X., FU X.Q., Dynamics of finite energy Airy beams modeled by the fractional Schrödinger equation with a linear potential, Journal of the Optical Society of America B 34(5), 2017, pp. 976–982, DOI: 10.1364/JOSAB.34.000976.
  • [27] ZHANG Y., ZHONG H., BELIĆ M.R., AHMED N., ZHANG Y., XIAO M., Diffraction-free beams in fractional Schrödinger equation, Scientific Reports 6(11), 2015, article no. 23645, DOI: 10.1038/srep23645.
  • [28] ZHANG L.F., LI C.X., ZHONG H.Z., XU C.W., LEI D.J., LI Y., FAN D.Y., Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes, Optics Express 24(13), 2016, pp. 14406–14418, DOI: 10.1364/OE.24.014406.
  • [29] ZHANG Y., ZHONG H., BELIĆ M.R., Y. ZHU, ZHONG W., ZHANG Y., CHRISTODOULIDES D.N., XIAO M., PT symmetry in a fractional Schrödinger equation, Laser & Photonics Reviews 10(3), 2016, pp. 526–531, DOI: 10.1002/lpor.201600037.
  • [30] LIEMERT A., KIENLE A., Fractional Schrödinger equation in the presence of the linear potential, Mathematics 4(2), 2016, article no. 31, DOI: 10.3390/math4020031.
  • [31] SEGEV M., VALLEY G.C., BASHAW M.C., TAYA M., FEJER M.M., Photovoltaic spatial solitons, Journal of the Optical Society of America B 14(7), 1997, pp. 1772–1781, DOI: 10.1364/JOSAB.14.001772.
  • [32] LU K., LI K., ZHANG Y., YUAN C., MIAO C., CHEN L., XU J., Gray photorefractive polymeric optical spatial solitons, Optics Communications 283(23), 2010, pp. 4741–4748, DOI: 10.1016/j.optcom.2010.06.102.
  • [33] ZHANG T.H., REN X.K., WANG B.H., LOU C.B., HU Z.J., SHAO W.W., XU Y.H., KANG H.Z., YANG J., YANG D.P., FENG L., XU J.J., Surface waves with photorefractive nonlinearity, Physical Review A 76(1), 2007, article no. 013827, DOI: 10.1103/PhysRevA.76.013827.
  • [34] MASOOD KHALIQUE C., BISWAS A., A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity, Communications in Nonlinear Science and Numerical Simulation 14(12), 2009, pp. 4033–4040, DOI: 10.1016/j.cnsns.2009.02.024.
  • [35] YAN Y.Y., LIU W.J., ZHOU Q., BISWAS A., Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic–quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain, Nonlinear Dynamics 99(2), 2020, pp. 1313–1319, DOI: 10.1007/s11071-019-05356-0.
  • [36] BISWAS A., YILDIRIM Y., YASAR E., ZHOU Q., MAHMOOD M.F., MOSHOKOA S.P., BELIC M., Optical solitons with differential group delay for coupled Fokas–Lenells equation using two integration schemes, Optik 165, 2018, pp. 74–86, DOI: 10.1016/j.ijleo.2018.03.100.
  • [37] BISWAS A., YILDIRIM Y., YAŞAR E., ZHOU Q., MOSHOKOA S.P., BELIC M., Optical soliton solutions to Fokas-Lenells equation using some different methods, Optik 173, 2018, pp. 21–31, DOI: 10.1016/j.ijleo.2018.07.098.
  • [38] BISWAS A., EKICI M., SONMEZOGLU A., BELIC M.R., Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik 181, 2018, pp. 1028–1038, DOI: 10.1016/j.ijleo.2018.12.164.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dfb1d0d-f794-4c0f-88e9-7403fc07d0f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.