PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Nano-thermites: a Pathway to Enhanced Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-thermites or metastable intermolecular composites (MICs) have been implemented into modern research on energetic materials as they offer much higher energy densities, higher rates of energy release, stability, and safety (lower sensitivity). This paper reviews several synthetic methods for MICs that have been well thought-out for energetic applications, advantages and disadvantages, as well as the characteristics of each manufacturing technique. The techniques presented include powder mixing, sol-gel, synthesis of MICs based on nano-porous silicon (Psi), sputtering, multilayer nano-foils and electrolytically plated carbon nano-materials for nano-thermite applications. These techniques offer enormously different characteristics and, through the variation of various chemical techniques and conditions, a wide range of chemical and energetic properties may be attained. This may give the opportunity for the safe use of MICs as replacements for some conventional energetic materials in various applications, and may also enable us to study the effects when incorporating these MICs into energetic matrixes, as a promising and feasible research field.
Słowa kluczowe
Rocznik
Strony
63--85
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
Bibliografia
  • [1] Klapötke, T.M. Chemistry of High-Energy Materials. Walter de Gruyter GmbH & Co KG, Munich, Germany, 2017; ISBN 9783110536317.
  • [2] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41(3): 426-51.
  • [3] Teipel, U. Energetic Materials: Particle Processing and Characterization. Wiley-VCH, Weinheim, Germany, 2005; ISBN 9783527302406.
  • [4] Elbeih, A.; Jungova, M.; Zeman, S.; Vávra, P.; Akštein, Z. Explosive Strength and Impact Sensitivity of Several PBXs Based on Attractive Cyclic Nitramines. Propellants Explos. Pyrotech. 2012, 37(3): 329-34.
  • [5] Elbeih, A.; Elshenawy, T.; Gobara, M. Application of cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5d] Imidazole (BCHMX) in EPX-1 Explosive. Def. Sci. J. 2016, 66(5): 499-503.
  • [6] Elbeih, A.; Zeman, S.; Jungová, M.; Vávra, P. Attractive Nitramines and Related PBXs. Propellants Explos. Pyrotech. 2013, 38(3): 379-385.
  • [7] Dreizin, E.L. Phase Changes in Metal Combustion. Prog. Energy Combust. Sci. 2000, 26(1): 57-78.
  • [8] Conkling, J.A. Chemistry of Pyrotechnics: Basic Principles and Theory. Marcel Dekker, Inc., New York, USA, 1985; ISBN 0-8247-7443-4.
  • [9] Yen, N.H.; Wang, L.Y. Reactive Metals in Explosives. Propellants Explos. Pyrotech. 2012, 37(2): 143-55.
  • [10] Rossi, C. Two Decades of Research on Nano Energetic Materials. Propellants Explos. Pyrotech. 2014, 39(3): 323-327.
  • [11] Rossi, C.; Zhang, K.; Esteve, D.; Alphonse, P.; Tailhades, P.; Vahlas, C. Nanoenergetic Materials for MEMS: A Review. J. Microelectromech. Syst. 2007, 16(4): 919-931.
  • [12] Hofmann, A.; Laucht, H.; Kovalev, D.; Timoshenko, V.Y.; Diener, J.; Künzner, N.; Gross, E. Explosive Composition and Its Use. Patent US 6984274, 2006.
  • [13] Bönnemann, H.; Richards, R.M. Nanoscopic Metal Particles – Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem. 2001, 2001(10): 2455-2480.
  • [14] Zhi, J.; Shu-Fen, L.; Feng-Qi, Z.; Zi-Ru, L.; Cui-Mei, Y.; Yang, L.; Shang-Wen, L. Research on the Combustion Properties of Propellants with Low Content of Nano Metal Powders. Propellants Explos. Pyrotech. 2006, 31(2): 139-147.
  • [15] Elbasuney, S. Dispersion Characteristics of Dry and Colloidal Nano-Titania into Epoxy Resin. J. Powder Technol. 2014, 268: 158-164.
  • [16] Zaky, M.G.; Abdalla, A.M.; Sahu, R.P.; Puri, I.K.; Radwan, M.; Elbasuney, S. Nanothermite Colloids: A New Prospective for Enhanced Performance. J. Def. Technol. 2019, 15(3): 319-325.
  • [17] Elbasuney, S.; Zaky. M.G.; Radwan, M., Sahu R.P.; Puri, I.K. Synthesis of CuO Nanocrystals Supported on Multiwall Carbon Nanotubes for Nanothermite Applications. J. Inorg. Organomet. Polym. Mater. 2019, 29(4): 1407-1416.
  • [18] Piercey, D.G.; Klapoetke, T.M. Nanoscale Aluminum-Metal Oxide (Thermite) Reactions for Application in Energetic Materials. Cent. Eur. J. Energ. Mater. 2010, 7(2): 115-129.
  • [19] Ting, A.; Wen-Gang, Q.; Yan-Jing, Y.; Feng-qi, Z.; Qi-Long, Y. Preparation, Characterization, and Application of Superthermites in Solid Propellants. In: Nanomaterials in Rocket Propulsion Systems. Micro and Nano Technologies. 2019, Ch. 4, pp. 113-150; ISBN 9780128139080.
  • [20] Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006, 18(4): 867-871.
  • [21] Ahn, J.Y.; Kim, W.D.; Cho, K.; Lee, D.; Kim, S.H. Effect of Metal Oxide Nanostructures on the Explosive Property of Metastable Intermolecular Composite Particles. J. Powder Technol. 2011, 211(1): 65-71.
  • [22] Siegert, B.; Comet, M.; Muller, O.; Pourroy, G.; Spitzer, D. Reduced-Sensitivity Nanothermites Containing Manganese Oxide Filled Carbon Nanofibers. J. Phys. Chem. C. 2010, 114(46): 19562-19568.
  • [23] Thiruvengadathan, R.; Bezmelnitsyn, A.; Apperson, S.; Staley, C.; Redner, P.; Balas, W.; Nicolich, S.; Kapoor, D.; Gangopadhyay, K.; Gangopadhyay, S. Combustion Characteristics of Novel Hybrid Nanoenergetic Formulations. Combust. Flame 2011, 158(5): 964-978.
  • [24] Bockmon, B.S.; Pantoya, M.L.; Son, S.F.; Asay, B.W.; Mang, J.T. Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites. J. Appl. Phys. 2005, 98(6): 064903.
  • [25] Wen, J.Z.; Ringuette, S.; Bohlouli-Zanjani, G.; Hu, A.; Nguyen, N.H.; Persic, J.; Petre, C.F.; Zhou, Y.N. Characterization of Thermochemical Properties of Al Nanoparticle and NiO Nanowire Composites. Nanoscale Res. Lett. 2013, 8, paper 184: 1-9.
  • [26] Rossi, C.; Estève, D. Micropyrotechnics, a New Technology for Making Energetic Microsystems: Review and Prospective. Sens. Actuators, A 2005, 120(2): 297-310.
  • [27] Explosive Effects and Applications. (Zukas, J.A.; Walters, W.P., Eds.) Springer Science & Business Media, New York, USA, 1998; ISBN 0-387-98201-9.
  • [28] Zarko, V.E.; Gromov, A.A. Energetic Nanomaterials: Synthesis, Characterization, and Application. Elsevier, Amsterdam, Netherland, 2016; ISBN 9780128027103.
  • [29] Wang, L.; Yi, C.; Zou, H.; Gan, H.; Xu, J.; Xu, W. Adsorption of the Insensitive Explosive TATB on Single-walled Carbon Nanotubes. Mol. Phys. 2011, 109(14): 1841-1849.
  • [30] Sun, J.; Pantoya, M.L.; Simon, S.L. Dependence of Size and Size Distribution on Reactivity of Aluminum Nanoparticles in Reactions with Oxygen and MoO3. Thermochim. Acta 2006, 444(2): 117-127.
  • [31] Granier, J.J.; Pantoya, M.L. Laser Ignition of Nanocomposite Thermites. Combust. Flame 2004, 138(4): 373-383.
  • [32] Clapsaddle, B.J.; Zhao, L.; Prentice, D.; Pantoya, M.L.; Gash, A.E.; Satcher,, J.J.; Shea, K.J.; Simpson R.L. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods. Proc. 36th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2005, 39/1-39/10.
  • [33] Gash, A.E.; Tillotson, T.M.; Satcher, J.J.; Poco, J.F.; Hrubesh, L.W.; Simpson, R.L. Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts. Chem. Mater. 2001, 13(3): 999-1007.
  • [34] Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Satcher, J.J.; Poco, J. Nanostructured Energetic Materials using Sol-Gel Methodologies. J. Non-Cryst. Solids 2001, 285(1-3): 338-345.
  • [35] Baer, M.R.; Nunziato, J.W. A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiphase Flow 1986, 12(6): 861-889.
  • [36] Prakash, A.; McCormick, A.V.; Zachariah, M.R. Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core-Shell Nanostructure. Nano Lett. 2005, 5(7): 1357-1360.
  • [37] Tappan, A.S.; Long, G.T.; Wroblewski, B.; Nogan, J.; Palmer, H.A.; Kravitz, S.H.; Renlund A.M. Patterning of Regular Porosity in PETN Microenergetic Material Thin Films. Proc. 36th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2005, P134.
  • [38] Dreizin, E.L. Metal-based Reactive Nanomaterials. Prog. Energy Combust. Sci. 2009, 35(2): 141-67.
  • [39] Blobaum, K.J.; Reiss, M.E.; Plitzko, J.M.; Weihs, T.P. Deposition and Characterization of a Self-propagating CuOx/Al Thermite Reaction in a Multilayer Foil Geometry. J. Appl. Phys. 2003, 94(5): 2915-2922.
  • [40] Vine, T.A.; Tinston, S.; Fairhutst, R. Application of Physical Vapor Deposition to the Manufacture of Pyrotechnics. Proc. 28th Int. Pyrotech. Semin. 2001, pp. 4-9.
  • [41] Ward, T.; Chen, W.; Schoenitz, M.; Dreizin, E.; Dave, R. Nano-composite Energetic Powders Prepared by Arrested Reactive Milling. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005.
  • [42] Umbrajkar, S.M.; Schoenitz; M.; Dreizin, E.L. Control of Structural Refinement and Composition in Al-MoO3 Nanocomposites Prepared by Arrested Reactive Milling. Propellants Explos. Pyrotech. 2006, 31(5): 382-389.
  • [43] Tawfik, S.; Saleh, A.; Elbeih, A. Burning Rate of Polyurethane Composite Propellant with Energetic nano-Composite Additives. IOP Conf. Ser.: Materials Science and Engineering 2019, 610(1): 012001.
  • [44] Tawfik, S.M.; Saleh, A.; Elbeih, A.; Klapötke, T.M. Reactive Nanocomposites as Versatile Additives for Composite Propellants. Z. Anorg. Allg. Chemie 2016, 642(21): 1222-1229.
  • [45] Ferguson, J.D.; Buechler, K.J.; Weimer, A.W.; George, S.M. SnO2 Atomic Layer Deposition on ZrO2 and Al Nanoparticles: Pathway to Enhanced Thermite Materials. J. Powder Technol. 2005, 156(2-3): 154-163.
  • [46] Zhu, C.G.; Wang, H.Z.; Min, L. Ignition Temperature of Magnesium Powder and Pyrotechnic Composition. J. Energ. Mater. 2014, 32(3): 219-226.
  • [47] Li, X.; Bohn, P.W. Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon. Appl. Phys. Lett. 2000, 77(16): 2572-2574.
  • [48] Bartuch, H.; Clément, D.; Kovalev, D.; Laucht, H. Silicon Initiator, from the Idea to Functional Tests. Proc. 7th Int. Symp. and Exhibition on Sophisticated Car Occupant Safety Systems-Airbags, Karlsruhe, Germany, 2004.
  • [49] Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268(5216): 1466-1468.
  • [50] Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly Ordered Nanochannel-Array Architecture in Anodic Alumina. Appl. Phys. Lett. 1997, 71(19): 2770-2772.
  • [51] Menon, L.; Patibandla, S.; Ram, K.B.; Shkuratov, S.I.; Aurongzeb, D.; Holtz, M.; Berg, J.; Yun, J.; Temkin, H. Ignition Studies of Al/Fe2O3 Energetic Nanocomposites. Appl. Phys. Lett. 2004, 84(23): 4735-4737.
  • [52] Evteev, A.V.; Levchenko, E.V.; Riley, D.P.; Belova, I.V.; Murch, G.E. Reaction of a Ni-coated Al Nanoparticle to Form B2-NiAl: A Molecular Dynamics Study. Philos. Mag. Lett. 2009, 89(12): 815-830.
  • [53] Ramos, A.S.; Vieira, M.T. Intermetallic Compound Formation in Pd/Al Multilayer Thin Films. Intermetallics 2012, 25: 70-74.
  • [54] Kim, S.H.; Zachariah, M.R. Enhancing the Rate of Energy Release from Nanoenergetic Materials by Electrostatically Enhanced Assembly. Adv. Mater. 2004, 16(20): 1821-1825.
  • [55] Subramaniam, S.; Hasan, S.; Bhattacharya, S.; Gao, Y.; Apperson, S.; Hossain, M.; Shende, R.; Gangopadhyay, S.; Redner, P.; Kapoor, D.; Nicolich, S. Self-assembled Nanoenergetic Composite of CuO Nanorods and Nanowells and Al Nanoparticles with High Burn Rates. Mater. Res. Soc. Symp. Proc., 2006, 896: 9.
  • [56] Chen, X.; Xia, J.; Peng, J.; Li, W.; Xie, S. Carbon-Nanotube Metal-matrix Composites Prepared by Electroless Plating. Compos. Sci. Technol. 2000, 60(2): 301-306.
  • [57] Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39(4): 507-514.
  • [58] Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon Nanotubes and Catalysis: the Many Facets of a Successful Marriage. Catal. Sci. Technol. 2015, 5(8): 3859-3875.
  • [59] Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials. Nanoscale 2016, 8(9): 4799-4851.
  • [60] Shen, J.; Qiao, Z.; Wang, J.; Yang, G.; Chen, J.; Li, Z.; Liao, X.; Wang, H.; Zachariah, M.R. Reaction Mechanism of Al-CuO nano-Thermites with Addition of Multilayer Graphene. Thermochim. Acta 2018, 666: 60-65.
  • [61] Jones, J.W. Energy Dense Explosives. Patent US 6679960, 2004.
  • [62] Zhang, T.; Zhao, N.; Li, J.; Gong, H.; An, T.; Zhao, F.; Ma, H. Thermal Behavior of Nitrocellulose-based Superthermites: Effects of nano-Fe2O3 with Three Morphologies. RSC Adv. 2017, 7: 23583-23590.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dfad489-d5a9-40c6-986a-b2a79eb810f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.