PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of free electrons in doped silicon crystals derived from Fourier transformed infrared measurements and ab initio calculations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reflection spectra of n- and p-type silicon crystals doped with phosphorus and boron were measured for the free carrier concentrations of 1.1 · 10¹⁵ cm⁻³ - 1.2 · 10²⁰ cm⁻³ in the far- and mid-infrared range between 20-3000 cm⁻¹ using synchrotron radiation and Fourier transformed infrared technique. Transmittance spectra could be measured for lower sample carrier concentrations from the range studied. The measured reflection spectra were fitted by using the Drude relation and the parameters of free electron conductivity (electron effective mass m* and momentum scattering time ) were obtained for the n- and p-typedoped silicon. Additionally, the calculations of the band electronic structure and the electric conductivity of the crystals were performed in the framework of the density functional theory for different carrier concentrations and temperatures. The study main findings are (1) the substantial decrease of the momentum scattering time and (2) the clear increase of the electron effective mass m* with an increase of the carrier concentrations Nc for both n- and p-type-doped silicon crystals.
Rocznik
Strony
art. no. e153756
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
  • Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
  • Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
  • Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
  • Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
  • Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Strasse 2, 12489 Berlin, Germany
  • Department of General Physics, Lviv Polytechnic National University, 12 Stepan Bandera St., 79013 Lviv, Ukraine
Bibliografia
  • [1] Tulsyan, G. Doping Profile Measurements in Silicon Using Terahertz Domain Spectroscopy (THz-TDS) Via Electrochemical Anodic Oxidation. (Rochester Institute of Technology, Rochester, N.Y., 2015).
  • [2] Yoo, H., Heo, K., Ansari, H. R. & Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 11, 832 (2021). https://doi.org/10.3390/nano11040832.
  • [3] Zhou, J. et al. Mobility enhancement in heavily doped semicon-ductors via electron cloaking. Nat. Commun. 13, 2482 (2022). https://doi.org/10.1038/s41467-022-29958-2.
  • [4] Lan, C.-W., Hsu, C. & Nakajima, K. 10-Multicrystalline Silicon Crystal Growth for Photovoltaic Applications. in Handbook of Crystal Growth: Bulk Crystal Growth, Second Edition (Ed. Rudolph, P.) II, 373-411 (Elsevier, 2015). https://doi.org/10.1016/B978-0-444-63303-3.00010-9.
  • [5] Lan, C. W. et al. Engineering silicon crystals for photovoltaics. CrystEngComm 18, 1474-1485 (2016). https://doi.org/10.1039/c5ce02343b.
  • [6] Du, L., Yin, J., Zeng, W. & Yi, H. First-principles calculations to investigate electronic structures and optical properties of chalcogens-hyperdoped silicon. Solid State Commun. 342, 114610 (2022). https://doi.org/10.1016/j.ssc.2021.114610.
  • [7] Marri, I., Degoli, E. & Ossicini, S. First principle studies of B and P doped Si nanocrystals. Phys. Status Solidi (A) Appl. Mater. Sci. 215, 1700414 (2018). https://doi.org/10.1002/pssa.201700414.
  • [8] Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors, Physics and Materials Properties Fourth Ed. (Springer, 2010). https://doi.org/10.1007/978-3-642-00710-1.
  • [9] Schade, U., Ortolani, M. & Lee, J. Technical Report: THz experiments with coherent synchrotron radiation from BESSY II. Synchrotron Radiat. News 20, 17-24 (2007). https://doi.org/10.1080/08940880701631351.
  • [10] Sólyom, J. Fundamentals of the Physics of Solids, Volume II: Electronic Properties. (Springer-Verlag Berlin Heidelberg, 2009). https://doi.org/10.1007/978-3-540-85316-9.
  • [11] Kuzmenko, A. B. Kramers-Kronig constrained variational analysis of optical data. Rev. Sci. Instrum. 76, 083108 (2005). https://doi.org/10.1063/1.1979470.
  • [12] Spitzer, W. G. & Fan, H. Y. Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106, 882-890 (1957). https://doi.org/10.1103/PhysRev.106.882.
  • [13] Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993). https://doi.org/10.1103/PhysRevB.47.558.
  • [14] Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251-14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251.
  • [15] Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0.
  • [16] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169.
  • [17] Blöchl, E. P. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953.
  • [18] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758.
  • [19] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.
  • [20] Ganose, A. M. et al. Efficient calculation of carrier scattering rates from first principles. Nat. Commun. 12, 2222 (2021). https://doi.org/10.1038/s41467-021-22440-5.
  • [21] Madsen, G. K. H. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67-71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007.
  • [22] Polyanskiy, M. N. Refractiveindex.info database of optical constants. Sci. Data 11, 1-19 (2024). https://doi.org/10.1038/s41597-023-02898-2.
  • [23] Riffe, D. M. Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements. J. Opt. Soc. Am. B 19, 1092-1100 (2002). https://doi.org/10.1364/JOSAB.19.001092.
  • [24] Naik, G. V., Shalaev, V. M & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264-3294 (2013). https://doi.org/10.1002/adma.201205076.
  • [25] Chen, Y. B & Zhang, Z. M. Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces. J. Phys. D 41, 095406 (2008). https://doi.org/10.1088/0022-3727/41/9/095406.
  • [26] Faruque, O., Al Mahmud, R. & Sagor, R. H. Heavily doped silicon: A potential replacement of conventional plasmonic metals. J. Semicond. 42, 062302 (2021). https://doi.org/10.1088/1674-4926/42/6/062302.
  • [27] Chandra, H. et al. Open-source automated mapping four-point probe. Materials 10, 110 (2017). https://doi.org/10.3390/ma10020110.
  • [28] Schroder, D. K. Semiconductor Material and Device Characterization, Third Edition. (John Wiley & Sons, Inc., 2006) https://doi.org/10.1002/0471749095.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. Experimental measurements were performed with infrared synchrotron radiation at the IRIS beamline of the electron storage ring BESSY II at the Helmholtz-Zentrum Berlin für Materialien und Energie in the framework of the BESSY proposal 232-12203-ST. Computer calculations were performed at ICM of Warsaw University, Poland (projects nos. g93-1636 and g96-1832) and WCSS of Wrocław University of Science and Technology, Poland (project no. 053).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df7b909-e3b7-47fe-a540-24ed586fe403
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.