PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bleached Kraft Pulps From Blends of Wood and Hemp. Part II – Structural, Optical and Strength Properties of Pulps

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Roztwarzanie i bielenie mieszanek drewna i konopi. Część II. Właściwości strukturalne, optyczne i wytrzymałościowe
Języki publikacji
EN
Abstrakty
EN
The breathability, strength, structural and optical properties of bleached kraft pulps from blends of birch or pine with hemp stalks in a proportion of 80/20 weight % were studied. It was found that these pulps generally have comparable properties to those of bleached pulps from birch and pine. The properties of bleached pulps produced from 80/20 weight % blends of pine or birch with hemp woody-core such as the breaking length, burst, and light scattering proved to be comparable or better than those of bleached pulps from wood. However, the replacement of a part of birch or pine with hemp-woody core negatively affected their bulk, air-resistance, and tearing resistance. Taking into consideration the results presented in Part I and Part II of the study, it can concluded that hemp stalks are better fibrous raw material for the manufacturing of papermaking intermediates partially free of wood fibres than hemp woody-core.
PL
W pracy zbadano podatność na mielenie oraz właściwości strukturalne, optyczne i wytrzymałościowe bielonych mas celulozowych wytworzonych z mieszanek drewna brzozy i sosny z łodygami konopnymi o udziale tych łodyg odpowiednio 80 i 20% wag. Stwierdzono, że właściwości tych mas celulozowych są zbliżone do właściwości bielonych mas celulozowych brzozowej i sosnowej. Co się tyczy bielonych mas celulozowych z mieszanek drewna brzozy i sosny z drewnikiem konopnym to ich właściwości takie jak: samozerwalność, przepuklenie i zdolność do rozpraszania światła również okazały się porównywalne lub nawet lepsze, niż w przypadku bielonych mas brzozowej i sosnowej. Zastąpienie części drewna drewnikiem konopnym wpływało jednak ujemnie na objętość właściwą, przepuszczalność powietrza, a także odporność na przedarcie arkusików mas celulozowych. Biorąc pod uwagę wyniki przedstawione w części I i II pracy, można zatem stwierdzić, że łodygi konopne są lepszym surowcem włóknistym do wytwarzania częściowo wolnych od włókien drewna papierniczych półproduktów włóknistych, niż drewnik konopny.
Rocznik
Strony
111--116
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Management and Production Engineering, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, 223 Wolczanska Street, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Management and Production Engineering, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, 223 Wolczanska Street, 90-924 Lodz, Poland
Bibliografia
  • 1. Replacement of 1/5 of wood with hemp stalks and hemp woody-core changes the SR-freeness of bleached kraft pulps from these blends by 3-5.5°SR after their moderate beating in a Jokro mill.
  • 2. Bleached kraft pulps from wood/HFRM blends are characterised by good strength as well as structural and optical properties, which are generally comparable with those of bleached pulps from birch and pine.
  • 3. The good tensile strength and burst of such pulps are due to the presence of woody-core fibres, while the good bulk and tear are the effect of the presence of long, primary and secondary bast fibres, which are slightly susceptible to flattening.
  • 4. The breaking length, burst strength, and optical properties of bleached kraft pulps from wood/hemp woody-core blends are comparable with or better than those of bleached birch and pine kraft pulps. However, the replacement of a part of birch and pine with hemp-woody core negatively affects the bulk, and air and tear resistance of the bleached kraft pulps produced.
  • 5. Taking into consideration the results presented in Part I and Part II of the study, one can conclude that hemp stalks are better fibrous raw material for the production of papermaking intermediates partially free of wood fibres than hemp woody-core.
  • 1. Danielewicz D, Surma-Ślusarska B. Bleached kraft pulps from blends of wood and hemp. Part I. Demand of alkali, yield of pulps, their fractional composition and fibre properties. FIBRES & TEXTILES in Eastern Europe 2019, 27, 1(133): 100- 105. DOI: 10.5604/01.3001.0012.7514
  • 2. PN-EN 25264-3. Fibrous pulps – Laboratory beating – The Jokro mill method. Polish Committee for Standardization, Warsaw, Poland, 1999.
  • 3. PN-EN ISO 5267-1. Pulps – Determination of the degree of beating – Part 1: Schopper-Riegler method. Polish Committee for Standardization, Warsaw, Poland, 2002.
  • 4. PN-EN-ISO 5269-1. Pulps – Preparation of laboratory paper handsheets for testing physical properties – Part 1: The conventional method of forming of handsheets. Polish Committee for Standardization, Warsaw, Poland, 2005.
  • 5. PN-EN ISO 536. Paper and paperboard – Determination of basis weight. Polish Committee for Standardization, Warsaw, Poland, 2012.
  • 6. PN-EN ISO 534 Paper and paperboard – Determination of thickness, density and bulk. Polish Committee for Standardization, Warsaw, Poland, 2012.
  • 7. ISO 5636-5. Paper and board – Determination of air permeance and air resistance (medium range) – Part 5: Gurley method. International Organization for Standardization, Geneva, Switzerland, 2003.
  • 8. PN-EN ISO 1924-2. Paper and paperboard. Determination of properties of paper and paperboard exposed to tensile forces – Part 2: The test at a constant stretching speed (20 mm/min). Polish Committee for Standardization, Warsaw, Poland, 2010.
  • 9. PN-EN ISO 2758. Paper – Determination of burst strength. Polish Committee for Standardization, Warsaw, Poland, 2004.
  • 10. PN-EN ISO 1974. Paper – Determination of tearing resistance – Elmendorf method. Polish Committee for Standardization, Warsaw, Poland, 2012.
  • 11. TAPPI T 423 om-89. Folding endurance of paper (Schopper type tester). TAPPI Press, Atlanta, 1992.
  • 12. Levlin J-E. The characterization of papermaking pulps. TAPPI J. 1975; 58: 71- 74.
  • 13. Danielewicz D, Surma-Ślusarska B. Properties and fibre characterization of bleached hemp, birch and pine pulps: a comparison. Cellulose 2017; 24: 5173- 5186.
  • 14. Zomers FHA, Gosselink RJA, Van Dam JEG, Tjeerdsma BF. Organosolv pulping and test paper characterization of fiber hemp. TAPPI J. 1995; 78:149-155.
  • 15. De Groot B, Van der Kolk JC, Van Dam JEG, Van T’Riet K. Papermaking characteristics of alkaline hemp-woody-core pulps. TAPPI J. 1999; 82:107-112.
  • 16. Dutt D, Upadhyaya JS, Malik RS, Tyagi CH. Studies on the pulp and papermaking characteristics of some Indian non-woody fibrous raw materials. Cell. Chem. Technol. 2005; 39:115-128.
  • 17. Kellicut KQ. How paperboard properties affect corrugated container performance. TAPPI J. 1961; 44: 201A-204A.
  • 18. Modrzejewski K. Olszewski J. Rutkowski J. Methods in pulp and paper industry. Lodz, Poland: Lodz University of Technology Press; 1985 (in Polish).
  • 19. Janknecht S, Michaud G, Barbe MC, Dessureaut S, Koran Z. Optimum CTMP/CMP pulps for board production. Pulp Pap-Canada 1997; 98: T163-170.
  • 20. Richter GA. Some aspects of papermaking properties of wood pulps. TAPPI J. 1958; 41: 778-795.
  • 21. Stone JE, Clayton DW. The role of sulphide in the kraft pulping. Pulp Pap Mag Canada 1960; 61: T307-313.
  • 22. Clark JA. Effect of fiber coarseness and length. I. Bulk, burst, tear, fold and tensile tests. TAPPI J. 1982; 45: 628-634.
  • 23. Dinwoodie JM. The influence of anatomical and chemical characteristics of softwood fibres on properties of sulfate pulps. TAPPI J. 1965; 49: 57-66.
  • 24. Tasman JE. The mechanical modification of papermaking fibres. Pulp Pap Mag Canada 1966; 67: T553-569.
  • 25. Horn RA. Morphology of pulp fiber from hardwoods and influence on paper strength. USDA Forest Service. Research Paper FPL 312, For. Prod. Lab, Madison, WI, USA, 1978.
  • 26. El-Hosseiny F, Anderson, D. Effect of fibre length and coarseness on the burst strength of paper. TAPPI J. 1999; 82: 202-203.
  • 27. Carlson WE. Improving the performance of shipping sack papers. TAPPI J. 1981; 64: 85-87.
  • 28. Seth RS, Page DH. Fibre properties and tearing resistance. TAPPI J. 1988; 71: 103-107.
  • 29. Page DH, McLoed JM. Fiber strength and its impact on tear strength. TAPPI J. 1992; 75: 172-174.
  • 30. Kärlenlampi P. The effect of wood raw material of kraft pulp to the properties of wood containing printing papers. Pap Puu-Pap Tim. 1995; 77: 565-570.
  • 31. Retulainen E. Fibre properties as a control variables in papermaking. Part. I. Fibre properties of key importance in the network. Pap Puu-Pap Tim. 1996; 78: 187-194.
  • 32. Jarbao R, Fuente E, Monte MC, Savastano H, Mutjé P, Negro C. Use of cellulose fibres from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Ind. Crops Prod. 2012; 39: 89-96.
  • 33. Brandon CE. Effect of basis weight on folding endurance. TAPPI J. 1966; 49: 233-235.
  • 34. Cardwell R, Lyon L, Luner P. Evaluation of a fold test procedure for paper aging studies. TAPPI J. 1972; 55: 228-233.
  • 35. Kohler S. Folding endurance of paper. World’s Pap Trade Rev 1955; 145: 1749-1772.
  • 36. Kleinau J. Properties of secondary fibres. TAPPI J. 1966; 49: 90A-93A.
  • 37. Paavilainen L. Quality-competitiveness of Asian short-fibre raw materials in different paper grades. Pap Puu-Pap Tim. 2000; 82: 156-161.
  • 38. Green CJ. Functional paper properties in xerography. TAPPI J. 1981; 64: 79-81.
  • 39. Engman C. Iggesund’s experience of CTMP in high-quality packaging board. Pulp Pap-Canada 1989; 90: T303-305.
  • 40. Renman S. CTMP in sanitary products. Pulp Pap-Canada 1988; 89: T381-383.
  • 41. Jackson M, Akerlund G. Chemithermomechanical pulp production and end-uses in Scandinavia. TAPPI J. 1985; 68: 64-68.
  • 42. Scott-Kerr C. Manufacture of multiwall sack papers. Pulp Pap-Canada. 1997; 98: 45-47.
  • 43. Kawka W, Rogut R, Szymański A. Technological tendencies in production of filter papers for automotive and aviation. Przegl. Papiern. 2005; 64: 457-460 (in Polish).
  • 44. Breck DH, Styan GE. High quality, high -yield pulps: the pulps of the future. Pulp Pap- Canada 1985; 86: T81-86.
  • 45. Danielewicz D, Surma-Ślusarska B. Characterization of bleached hemp pulps with the use of computer image analysis method. FIBRES & TEXTILES in Eastern Europe 2011; 19, 2(85): 96- 101.
  • 46. Thygesen A, Oddershede J, Lilholt H. On the determination of cristallinity and cellulose content in plant fibres. Cellulose 2005; 12: 563-576.
  • 47. Kopania E, Wietecha J, Ciechańska D. Studies on isolation of cellulose fibres from waste plant biomass. FIBRES & TEXTILES in Eastern Europe 2012; 20; 6B(96): 167-172.
  • 48. Garnagul N, Ju S, Shallhorn P, Miles K. Optimizing high-consistency refining conditions for good sack paper quality. APPITA J. 2006; 59: 476-480.
  • 49. Hawel J, Komorovsky W. Porównanie aparatów do oznaczania przepuszczalności powietrza system Schoppera i Gurleya. Przegl. Papiern. 1949; 5: 116-119.
  • 50. Libal J. Technological filter papers. Pap Celul. 1988; 43: 109-113.
  • 51. Carter D. By using technology, improved SCA grades can target LWC. Pulp Pap. 1999; 73(11): 56-58, 60-61.
  • 52. Tiikkaja E. Fibre dimensions: their effect on paper properties and required measuring accuracy. Pulp Pap-Canada 1999; 100: T386-388.
  • 53. Seth RS. The measurement and significance of fines. Pulp Pap-Canada 2003; 104: T47-50.
  • 54. Van der Akker JA. The meaning and measurement of opacity. TAPPI J. 1967; 50: 41A-44A.
  • 55. Middleton SR, Scallan AM. The optical properties of bleached kraft pulps. Nordic Pulp Pap Res J. 1992; 7: 22-29.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df79474-84c5-4535-a0e5-e3d0f64aa069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.