Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the pore water pressure and water content on a forested slope, focusing on the impact of canopy interception across various rainfall intensities. The study was performed on slopes in the Sukajaya Sub District of West Bogor, West Java, Indonesia, a region that encountered landslides in 2020. Soil hydraulic characteristics, soil textures, saturated water content, and soil moisture content at different pressures, were assessed at different slope locations and depths. The pore water pressure and water content change were simulated using the one-dimensional uniform (equilibrium) finite element model of water movement using the modified Richards and were executed with the HYDRUS 1D model across six scenarios of a combination of three rainfall events at two initial conditions of water content, contrasting bare and vegetated slopes of Maesopsis eminii, which exhibited 35% canopy interception. Findings demonstrate that bare soil attains saturation more rapidly, resulting in elevated pore water pressure and increased susceptibility to slope instability. Conversely, vegetated slopes have delayed saturation owing to canopy interception, which diminishes the volume of rainfall that reaches the soil. The results highlight the crucial function of vegetation in preserving slope stability by regulating soil water pressure and water content, particularly during intense rainfall events. This research enhances comprehension of how vegetated areas might reduce landslide hazards in high-rainfall environments.
Czasopismo
Rocznik
Tom
Strony
121--136
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Forest Management Department, IPB University, Jl. Dramaga, Bogor, Indonesia
autor
- Soil Science Department, Brawijaya University, Jl. Veteran, Malang, Indonesia
- Graduate Student of Forest Management Department, IPB University, Jl. Dramaga, Bogor, Indonesia
autor
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Malaysia, Locked Bag No. 3, 90509 Sandakan, Sabah, Malaysia
autor
- Civil and Environmental Engineering Department, IPB University, Jl. Dramaga, Bogor, Indonesia
autor
- Soil and Land Resources Science Department, IPB University, Jl. Dramaga, Bogor, Indonesia
autor
- Water Resources Engineering Department, Brawijaya University, Jl. Veteran, Malang, Indonesia
Bibliografia
- 1. Andreasen M., Christiansen J.R., Sonnenborg T.O., Stisen S., Looms, M.C. (2023). Seasonal dynamics of canopy interception loss within a deciduous and a coniferous forest. Hydrological Processes, 37(4). https://doi.org/10.1002/hyp.14828
- 2. Agbai W., Kosuowei M. (2022). Influence of land-use systems on hydraulic properties of soils in Yenagoa and Amassoma, Bayelsa State, Nigeria. International Journal of Environment. https://doi.org/10.3126/ije.v11i1.45838
- 3. Anlauf R. (2014). Using the EXCEL solver function to estimate the van Genuchten parameters from measured pF/water content values. Excel spreadsheed retrieved from www.al.hs-osnabrueck.de/anlauf.html on [July 2022]
- 4. Asdak C., Jarvis P., Van Gardingen P., Fraser, A. (1998). Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206(3–4), 237–244. https://doi.org/10.1016/s0022-1694(98)00108-5
- 5. Bonell M. (1993). Progress in understanding runoff generation dynamics in forests. Journal of Hydrology, 150, 217–275. https://doi.org/10.1016/0022-1694(93)90112-M
- 6. Brook R.H., Corey A.T. (1964). Hydraulic properties of porous media. Hydrology Papers. Colorado State University
- 7. Buttle J.M., House D.A. (1997). Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. Journal of Hydrology, 203, 127–142
- 8. Couvreur V., Vanderborght J., Draye X., Javaux M. (2014). Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances. Water Resources Research, 50, 8891–8906. https://doi.org/10.1002/2014WR015608
- 9. De Mello C.R., Guo L., Yuan C., Rodrigues A.F., Lima R.R., Terra M.C. (2024). Deciphering global patterns of forest canopy rainfall interception (FCRI): A synthesis of geographical, forest species, and methodological influences. Journal of Environmental Management, 358, 120879. https://doi.org/10.1016/j.jenvman.2024.120879
- 10. Dexter A. (1988). Advances in characterization of soil structure. Soil and Tillage Research, 11(3–4), 199– 238. https://doi.org/10.1016/0167-1987(88)90002-5
- 11. Dietz J., Hölscher D., Leuschner C., Hendrayanto N. (2006). Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management, 237(1–3), 170–178. https://doi.org/10.1016/j.foreco.2006.09.044
- 12. Dlapa P., Hriník D., Hrabovský A., Šimkovic I., Žarnovičan H., Sekucia F., Kollár, J. (2020). The impact of land-use on the hierarchical pore size distribution and water retention properties in loamy soils. Water, 12, 339. https://doi.org/10.3390/w12020339
- 13. Elfadil, M.E. (2018). Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. International Journal of Hydrology. https://doi.org/10.15406/ijh.2018.02.00152
- 14. El-Ghany B.F., Arafa R.A.M., El-Rahmany T.A., El-Shazly M.M. (2010). Effect of some soil microorganisms on soil properties and wheat production under North Sinai conditions. Journal of Applied Sciences Research. 6, 559–579.
- 15. Fata Y.A., Hendrayanto, Erizal, Tarigan S.D. (2021). 2D and 3D Ground Model Development for Mountainous Landslide Investigation. IOP Conf. Series: Earth and Environmental Science, 1–12. https://doi.org/10.1088/1755-1315/871/1/012057
- 16. Fata Y.A., Hendrayanto, Pratama Y., Suria D. (2023). Evaluation of the gash rainfall interception model in forest plantations. Journal of Hunan University Natural Sciences, 50(12). https://doi.org/10.55463/issn.1674-2974.50.12.3
- 17. Fischer D.G., Vieira S.T., Jayakaran A.D. (2023). Distinct rainfall interception profiles among four common pacific northwest tree species. Forests, 14(1), 144. https://doi.org/10.3390/f14010144
- 18. Gonzalez-Ollauri A., Mickovski S.B. (2017). Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549, 374– 387. https://doi.org/10.1016/j.jhydrol.2017.04.014
- 19. Guan N., Cheng J., Shi X. (2023). Preferential flow and preferential path characteristics of the typical forests in the Karst Region of Southwest China. Forests, 14(6), 1248. https://doi.org/10.3390/ f14061248
- 20. Guo H., Ng C.W.W., Zhang Q. (2024). Three-dimensional numerical analysis of plant-soil hydraulic interactions on pore water pressure of vegetated slope under different rainfall patterns. Journal of Rock Mechanics and Geotechnical Engineering, 16(9), 3696–3706. https://doi.org/10.1016/j.jrmge.2023.09.032
- 21. Hemid E.M., Kántor T., Tamma A.A., Masoud M.A. (2021). Effect of groundwater fluctuation, construction, and retaining system on slope stability of Avas Hill in Hungary. Open Geosciences, 13, 1139–1157. https://doi.org/10.1515/geo-2020-0294
- 22. Hendrayanto, Kosugi K.T.U., Sakiki M., Mizuyama T. (1999). Spatial variability of soil hydraulic properties in a forested hillslope. J. For. Res, 4, 107–114
- 23. Hendrayanto, Kosugi K., Mizuyama T. (2000). Scaling hydraulic properties of forest soils. Hydrological Process, 14, 521–538.
- 24. Hendrickx M.G., Diels J., Janssens P., Schlüter S., Vanderborght J. (2023). Temporal covariance of spatial soil moisture variations: A mechanistic error modeling approach. Vadose Zone Journal, 23. https://doi.org/10.1002/vzj2.20295
- 25. Ibrahim A., Mukhlisin M., Jaafar O. (2013). Numerical Assessment of Rainfall Infiltration into Soil Column for the Unsaturated Layered Residual Forest Soil. Jurnal Teknologi, 65(2), 121–127. https://doi.org/10.11113/jt.v65.2200
- 26. Jabro J.D., Stevens W.B. (2022). Pore size distribution derived from soil–water retention characteristic curve as affected by tillage intensity. Water, 14(21), 3517. https://doi.org/10.3390/w14213517
- 27. Kharel G., Dhakal M., Deb S.K., Slaughter L.C., Simpson C., West C.P. (2023). Effect of long-term semiarid pasture management on soil hydraulic and thermal properties. Plants, 12(7), 1491. https://doi.org/10.3390/plants12071491
- 28. Kosugi K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res., 32(9), 2697–2703.
- 29. Kosugi K. (1997). Effect of pore radius distribution of forest soils on vertical water movement in soil profile. Journal of Japan Society of Hydrology & Water Resources, 10, 226–237.
- 30. Kuti’lek M., Nielsen D.R. (1994). Soil Hydrology. Catena Verlag, 104–105, Cremlingen, Germany.
- 31. Li Y., Liang Y., Wei T., Chen P., Ji X., Liu X. (2023). Spatiotemporal dynamics of rainfall interception and effective precipitation in the Loess Plateau after large‐scale afforestation. Land Degradation & Development, 34, 5004 – 5016. https://doi.org/10.1002/ldr.4825
- 32. Liu H., Feng S., Garg A., Ng C. (2018). Analytical solutions of pore-water pressure distributions in a vegetated multi-layered slope considering the effects of roots on water permeability. Computers and Geotechnics, 102, 252–261. https://doi.org/10.1016/j.compgeo.2018.06.003
- 33. Maturidi A.M.A.M., Kasim N., Taib K.A., Azahar W.N.A.W. (2021). Rainfall-Induced landslide thresholds development by considering different rainfall parameters: A review. Journal of Ecological Engineering, 22(10), 85–97. https://doi.org/10.12911/22998993/142183
- 34. Móricz N., Mátyás C., Berki I., Rasztovits E., Vekerdy Z., Gribovski Z. (2012). Comparative water balance study of forest and fallow plots. iForest, 5, 188–196. https://doi.org/10.3832/ifor0624-005
- 35. Mualem Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12(3), 513–522.
- 36. Noguchi S., Tsuboyama Y., Sidle R.C., Hosoda I. (1997). Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed, Japan. Journal of Forest Research, 2, 207–215.
- 37. Podhrázská J., Kučera J., Karásek P., Szturc J., Konečná J. (2021). The effect of land management on the retention capacity of agricultural land in the conditions of climate change – case study. Journal of Ecological Engineering, 22(1), 258–266. https://doi.org/10.12911/22998993/130230
- 38. Prado Hernández J.V., Pascual Ramírez F., Martínez Ruiz A., Cristóbal A.D. (2023). Surface water balance at the Chapingo River basin: rainfall intercepted by vegetation and water infiltration into the soil. Agro Productividad. https://doi.org/10.32854/agrop.v16i9.2586
- 39. Proteau A., Guittonny M., Bussière B. (2023). Impact of roots on the hydrogeological properties of silty soil covers. Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2023-0016
- 40. Qian Y., Shi C., Zhao T., Lu J., Bi B., Luo G. (2022). Canopy interception of different rainfall patterns in the rocky mountain areas of Northern China: An application of the revised gash model. Forests, 13(10), 1666. https://doi.org/10.3390/f13101666
- 41. Rashid N.S.A., Askari M., Tanaka T., Simunek J., van Genuchten M.T. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241–242, 306–312. https://doi.org/10.1016/j.geoderma.2014.12.003
- 42. Rashid N.S., Askari M. (2014). “Litter marks” around oil palm tree base indicating infiltration area of stemflow-induced water. National Seminar on Civil Engineering Research, 14–15 April, 2014, Johor Bahru, Malaysia
- 43. Salee R., Chinkulkijniwat A., Yubonchit S., Van D.B. (2022). Rainfall threshold for landslide warning in southern thailand –an integrated landslide susceptibility map with rainfall event –duration threshold. Journal of Ecological Engineering, 23(12), 124–133. https://doi.org/10.12911/22998993/155023
- 44. Sidle C.R., Ziegler A.D. (2017). The canopy interception–landslide initiation conundrum: insight from a tropical secondary forest in northern Thailand. Hydrology Earth System Science, 21, 651–667. https://doi.org/10.5194/hess-21-651-2017
- 45. Simunek J., Sejna M., Saito H., Sakai M., Van Genuchten M.T.H. (2013). The HYDRUS-1D software package for simulating the one-dimensional movement of water. Heat and Multiple Solutes in Variably-Saturated Media Version 4, 17, 1–343. California: University of California Riverside.
- 46. Suryatmojo H., Imron M.A. (2017). Hydrological processes in different types of teak (Tectona grandis L.) Plantation. In Springer eBooks, 11–19. https://doi.org/10.1007/978-981-10-5430-3_2
- 47. Tárník A., Igaz D. (2020). Spatial scale analysis of soil water content in agricultural soils of the Nitra River Catchment (Slovakia). Journal of Ecological Engineering, 21(1), 112–119. https://doi.org/10.12911/22998993/113076
- 48. Terzaghi K. (1923). Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hidrodynamichen Span-Nungserscheinungen, Akademie der Wissenschaften in Wien, Mathematish-Naturwissen-SchaftilicheKlasse: Mainz, Germany, 125–138.
- 49. Tian W., Peiffer H., Malengier B., Xue S., Chen Z. (2022). Slope stability analysis method of unsaturated soil slopes considering pore gas pressure caused by rainfall infiltration. Applied Sciences, 12(21), 11060. https://doi.org/10.3390/app122111060
- 50. Van Genuchten M.T.H. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898. doi:10.2136/sssaj1980.03615995004400050002x
- 51. Virano‐Riquelme V., Feger K., Julich S. (2022). Variation in hydraulic properties of forest soils in temperate climate zones. Forests, 13(11), 1850, https://doi.org/10.3390/f13111850
- 52. Wu T.H., McKinnell III W.P., Swanston D.N. (1979). Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J., 16(1), 19–33. https://doi.org/10.1139/t79-003
- 53. Yu M., Zhang L., Xu X., Feger K., Wang Y., Liu W., Schwärzel K. (2015). Impact of land-use changes on soil hydraulic properties of calcaric regosols on the loess plateau, NW China. Journal of Plant Nutrition and Soil Science, 178, 486–498. https://doi.org/10.1002/jpln.201400090
- 54. Zhong, F., Martens, B., van Dijk, A., Ren, L., Jiang, S., and Miralles, D.G. (2020). Global estimates of rainfall interception loss from satellite observations: recent advances in GLEAM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13975. https://doi.org/10.5194/egusphere-egu2020-13975
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df773f9-7848-46f9-8016-6bc6f4ada548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.